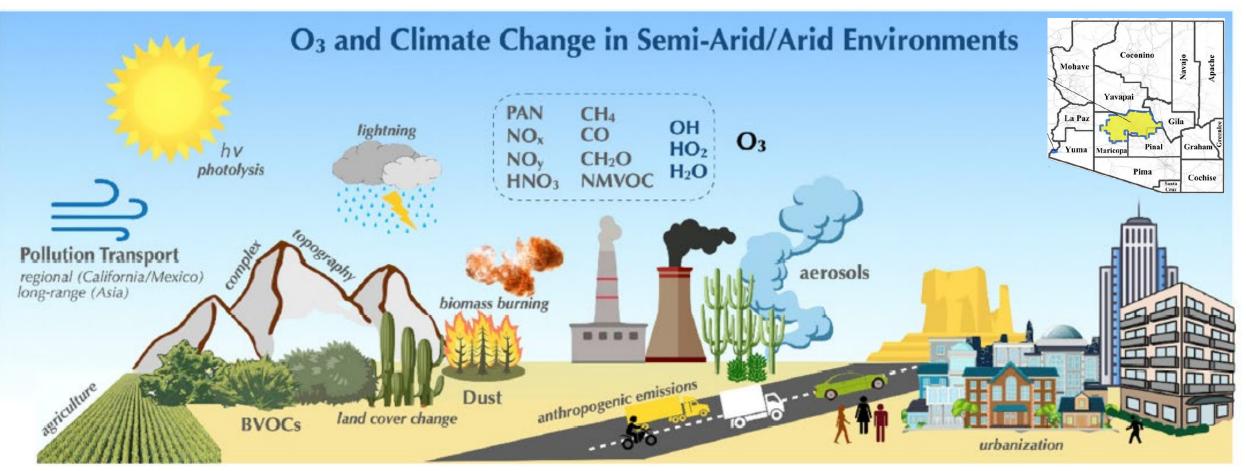

Ground Level Ozone Research (GLOR) Field Campaign Summer 2025

Armin Sorooshian (U-Arizona), Matt Fraser (ASU)

Association of Air Pollution Control Agencies (AAPCA) Spring Meeting, 1 May 2025

The Intermountain West Faces Similar Challenges



Emissions data does not include emissions from biogenic sources, prescribed fires, or wildfires.

GLOR focuses on ozone transport and formation for the 2025 ozone season: May-October

What makes Maricopa County a challenge?

- Environment/climate
- Extreme heat
- Complex terrain

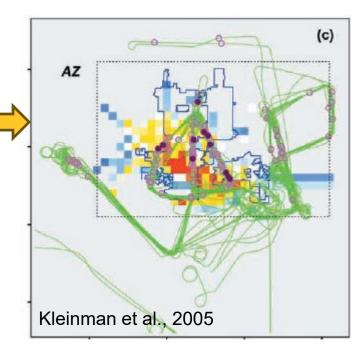
- Urbanization
- Wildfires
- Transport

Historical Context

Table 1. Chronology of Peer-Reviewed Literature Discussing Ozone Pollution in Arizona Categorized by Location (Phoenix, Tucson, Other) a

	Phoenix			Phoenix			
period of analysis	study topic	analysis type	ref	period of analysis	study topic		
Summer 1998	transport mechanism across Phoenix	0	7	2008-2010	environmental justice analysis related t		
Summer 1998	climate factors leading to high O ₃ in Phoenix	0	16	2006-2016	O ₃ in Phoenix atmospheric patterns in relation to		
Summer 1998	factors affecting O3 in Phoenix	M/O	17		observed O ₃		
Summer 1998	mechanistic understanding of O ₃ formation in Phoenix	0	18	2006-2017	analysis as a forecasting tool for O ₃ in Phoenix		
1995-1997	associations between mortality outcomes for elderly people and air pollutants (including O ₃)	0	19	2015-2019 2016 and 2028	barrier posed by urban heat on adopti alternative transportation to reduce (O ₃ source apportionment over U.S.		
Summer 1998	O ₃ production characteristics in Phoenix	0	20	2010-2019	factors governing heat-associated		
Summer 1998	mechanistic understanding of O ₃ formation in Phoenix	M/O	21	2019-2020	mortalities low-cost sensors: CO, NO ₂ , and O ₃		
1997-1999	relationship between O ₃ and secondary aerosol in urban air	0	22	2017 2020	measurements Tucson		
June 2001	examine role of vertical mixing on O ₃ chemistry of the boundary layer	0	23		iber weekend/weekday effect in O ₃		
June 2001	transport of O ₃ around Phoenix	0	24	1995-1998	1 1		
May to June 1998	factors affecting O ₃ in Phoenix	0	25	N/A	development of high-resolution (3 BVOC emissions inventory		
June to July 2001	using beryllium-7 to study stratospheric	0	26	1995-1998	emissions inventory for NO _x and V in Tucson		
2001 Summer 1998	intrusions of O ₃ comparing O ₃ production between major	0	27	April to Septem 1995–1998	ber factors affecting O ₃ in Tucson		
June 2001	U.S. cities structure of Phoenix's lower atmosphere	0	28	1972-1986	O ₃ -induced foliar injury to ponder pine trees		
	associated with premature vertical mixing			1995-1998	new method for spatially mapping around Tucson		
May to September 2001–2003	weekend effect of O_3 in Phoenix	0	29	1990-2003	Kolmogorov–Zurbenko (KZ) filte O ₃ trend analysis		
June 2001	vertical profiles of CO, $\mathrm{NO}_{\mathrm{sr}}$ and O_3	0	30	1990-2001	sensitivity of O ₃ to meteorological factors in Tucson		
1996-2004	weekly periodicity of meteorology, pollution, and human activity variables	0	31	2010-2012	O3 column abundance over Tucso Other		
1998	mesoscale meteorological modeling of low-level atmospheric flow	M/O	32	1990-2003	meteorologically adjusted urban air qua		
June 2001	vertical profiles of NO _x and O ₃ in Phoenix's nocturnal boundary layer	0	33	1997-1999	trends (Arizona) nationwide examination of weekend/		
1999-2000	analyzing factors that contribute to disparities in asthma hospitalizations	0	34	1963-1994	weekday effect in ozone relationships between synoptic conditio		
June to July 2002	simulating Phoenix O ₃ concentration distribution	M/O	35		and ground-level O ₃ (U.S.–Mexico border)		
N/A	environmental impacts of urban development in Phoenix	М	36	1995-2009	relationship between surface and free tropospheric O ₃ in western U.S.		
1998-2003	weekend effect of O ₃ in Phoenix and other U.S. cities	0	37	Summer 2008	transported background pollutants ove western U.S.		
June to	characterization of heat-related deaths	0	38	2006-2018	transport influences on O3 in Yuma		
September 2000-2005				May 2010	O3 transport to Arizona from southern California		
May to September 1999–2002	association between mean apparent temperature and total mortality	0	39	March to September 2010	modeling O ₃ concentrations across Nor America		
2005-2007	simulating southwest U.S. O3 levels	M/O	40	February to	impact of COVID-19 on environmental		
July 1996	photochemical plume modeling around Phoenix	M/O	41	July 2020 1988–2018	pollutants in Arizona weather relationships with air pollution		
14 May 2012 and 9 June	modeling of urbanization effects on O ₃ in Phoenix	M/O	42	2001-2010	Arizona over a 30 y period (1988–20 wildfire contributions to O ₃ (Chiricahu		
2011				1996-2000	cause for spring-time ground-level O3 p		
2005-2009	assessment of air quality monitoring network for Maricopa County	M/O	43	April to	(Grand Canyon National Park) VOC and O ₃ measurements (Grand Ca		
2008-2010	sensitivity of O3 analysis to spatial scale of analysis	M/O	44	September 2017	National Park)		
14 May 2012 and 19 July 2005	regional transport of O ₃ from southern California to Phoenix	M/O	45		: O = observational; M = modeling. I ation on modeling studies.		
2007-2012	relationship between O3 and asthma	0	46				

- ~65 publications on ozone research in Arizona
- First published 1996


M/O

0

Please see Table S1

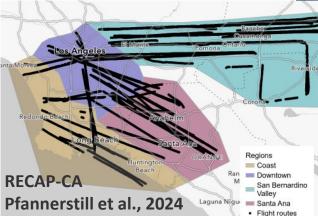
VOCs

- Majority based on ground sampling
- One major airborne campaign
- Speciated VOC data are lacking
- Limited remote sensing data

Phoenix Sunrise Experiment May-June 2001 (ADEQ/DOE)

hospital visits

Building on Recent Regional Work



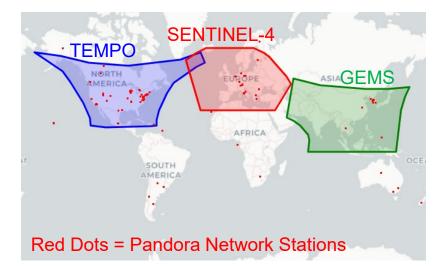
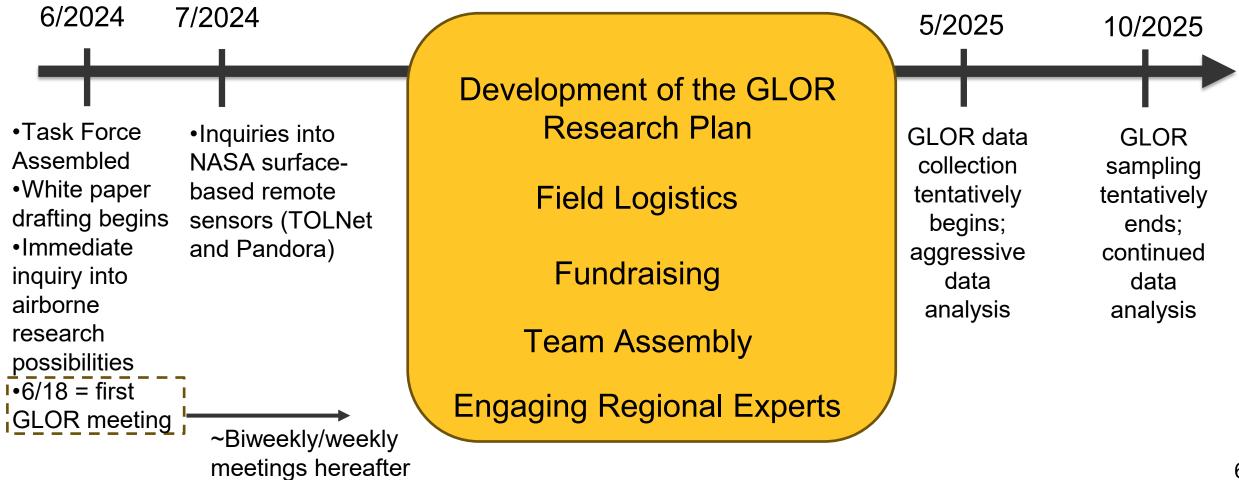


Figure 3. AiRMAPS airborne survey schedule for 2024-2026. The base map shows nitrogen dioxide columns as measured from the <u>TROPOMI</u> satellite instrument for summer 2023. The shaded areas and dashed circles show O&G basins and urban areas for AIRMAPS surveys by

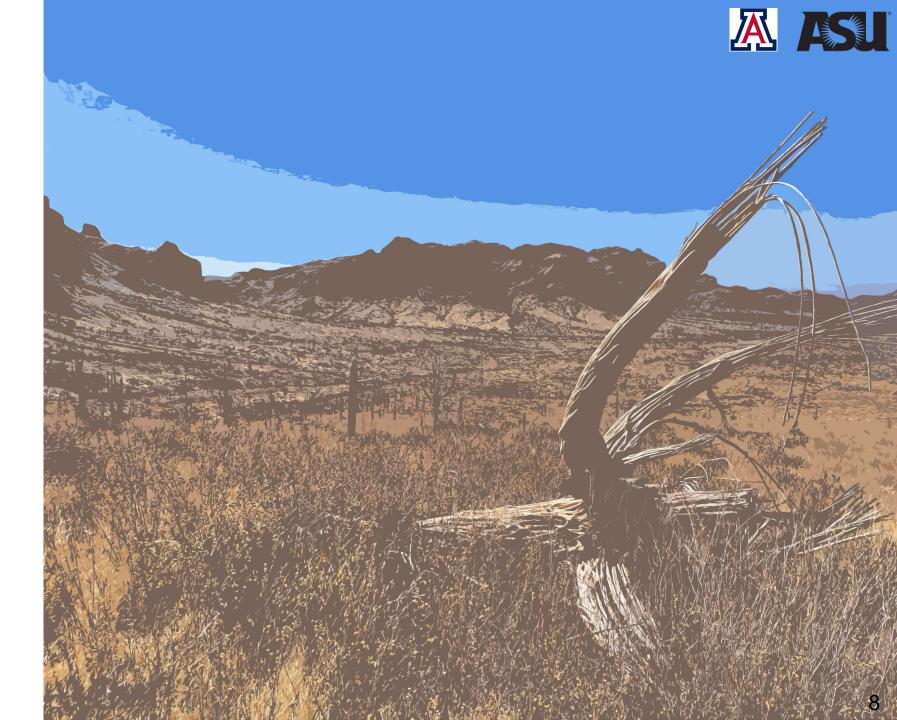
Arizona Needs To Catch Up



Welcome to the NASA Pandora project, part of the Pandonia Global Network. This project uses spectroscopy to study ultraviolet (UV) and visible wavelengths of light to determine the composition of the atmosphere and its interactions with Farth's environment. The Pandora Spectrometer System was designed to specifically look at levels of ozone, nitrogen dioxide and formaldehyde in the atmosphere.

Timeline of Events

Ground Level Ozone Research (GLOR)



Hypotheses Related to Phoenix Ozone Levels

- Hypothesis 1: Increased wildfire activity throughout western continental North America has significantly and consistently raised background ozone concentrations, higher exceedance day ozone concentrations, and more frequent ozone exceedance days in Intermountain West nonattainment areas.
- Hypothesis 2: Anthropogenic NO_x and VOC emissions locally and nationally may not be decreasing as quickly as
 expected by existing emission projections
- Hypothesis 3: Biogenic sources of NO_x and VOC may be counteracting reductions from anthropogenic sources such that ambient NO_x and VOC concentrations may not be decreasing at the expected rate.
- Hypothesis 4: Changes in atmospheric ozone chemistry are impairing the impacts of reductions in manmade precursor emissions on expected reductions in policy-relevant ozone concentrations in Intermountain West nonattainment areas.
- Hypothesis 5: Increases in transported ozone from outside Intermountain West nonattainment areas have contributed significantly to background ozone concentrations, higher exceedance day ozone concentrations, and more frequent ozone exceedance days.
- Hypothesis 6: Meteorological and climatological factors play a significant role in impairing the impacts of reductions in manmade precursor emissions on expected reductions in policy-relevant ozone concentrations in Intermountain West nonattainment areas.
- Hypothesis 7: Ozone concentrations above the 2015 EPA NAAQS (70 ppb) in the Intermountain West
 nonattainment areas (Phoenix, Salt Lake, Las Vegas, Denver) are primarily the result of a combination of regional
 factors (wildfires, transport, rising background, etc.) as opposed to local precursor emissions.

To explore these hypothesis, we have a robust research plan.

- Augmented monitoring at 7 sites
- Faculty and staff at two universities focused on analysis and interpretation
- AZDEQ, MCAQD, MAG, NASA JPL and EPA partners
- Focused assessment of 2025 ozone season

Research uses Ground Monitoring

Logistically, ground monitoring was the only option to deploy quickly to capture the summer 2025 ozone season

Augmented monitoring of VOCs by auto-GC, NO_x and NO_y at seven sites (2 upwind, 2 urban core, 3 downwind) – Sonoma Tech

Two Small Mobile Ozone LIDARs (SMOLs) to monitor transport aloft of ozone – NASA; possibly inclusion of Pandora units

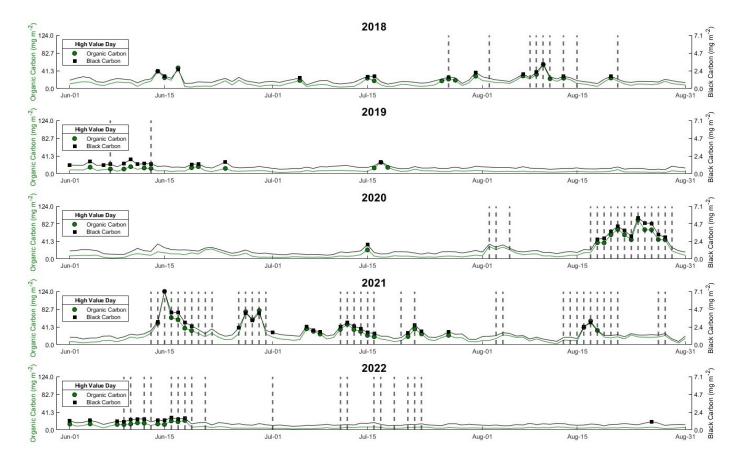
Targeting May to October deployment

 $\frac{1}{2} \text{Auto-GC, NO}_{x} \text{ and NO}_{y}$ $\frac{1}{2} \text{Auto-GC, NO}_{x}, \text{ NO}_{y} \text{ and ozone LIDAR}$

How can ASU and UA best support the MAG SIP development process?

Flow of data from the deployed ground sites – ground level concentrations, VOC/NO_x chemistry limitations, NO_y formation rates, aloft ozone transport – to support MAG Ozone SIP Weight of Evidence analysis.

- Identification of woodsmoke episodes
- Ozone chemistry analysis
- Studying common exceedance days across intermountain west
- WRF-Chem modeling to compliment/corroborate regulatory modeling
- Biogenic flux measurements and comparison to MEGAN



Identification of Woodsmoke Episodes

Analysis of woodsmoke episodes for exceptional events starts with ozone exceedance days. We* have focused on analysis of all days to separate the contribution of woodsmoke transport on ozone formation.

Using NOAA-HMS and NASA MERRA-2, we identify days clearly impacted by woodsmoke and days not impacted by woodsmoke as approaches used in other locations (spikes in $PM_{2.5}$ or ozone measurements) do not work here

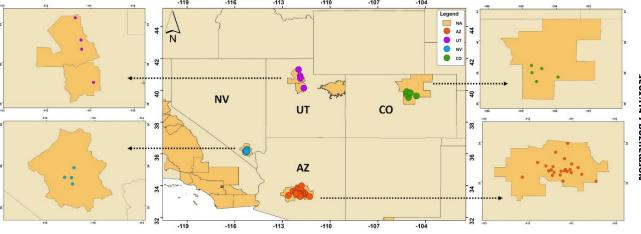
We tried other approaches (HYSPLIT/NCAR-FINN) but had the most success with these two approaches

* Braun and Fraser (2025) submitted for publication in Atmos. Environ.

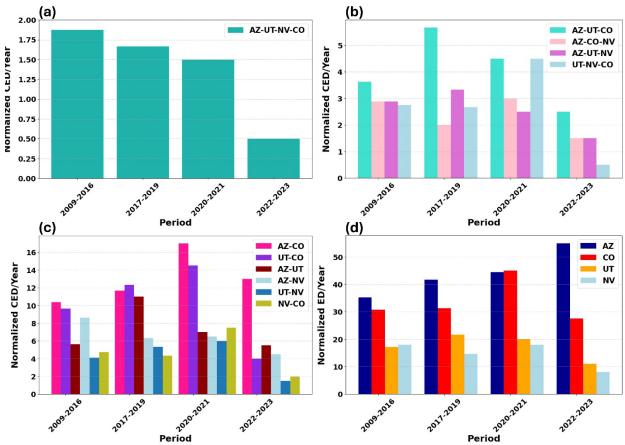
Ozone Chemistry Analysis - Satellite Data

With ABOR funding, ASU and UA investigated existing datasets to better understand ozone chemistry in Phoenix.

Specifically, we looked at ground-level monitoring data, satellite data and airshed modeling to investigate VOC vs NO_x limitations on ozone formation


TROPOMI satellite retrievals suggest the chemistry in central Phoenix is more VOC limited than surrounding areas based on column data

Averaged HCHO (**a**) and NO₂ (**b**) satellite column densities, HCHO/NO₂ ratio(**c**) over the Phoenix metro area for all available dates summer 2021


Common Exceedance Days Across Intermountain West

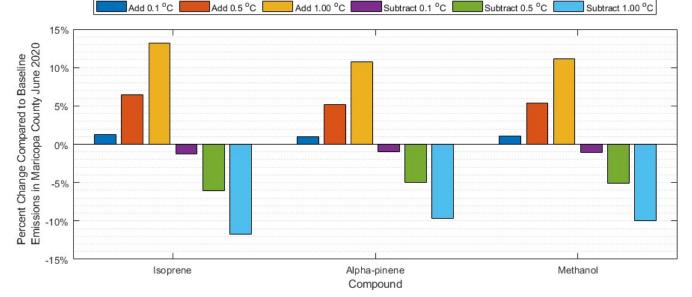
Investigating common O_3 exceedance days across 4 major areas looking at 4-, 3-, and 2-state combinations:

- 2009-2016 (post-great recession, exceedances still responding to emission decreases)
- 2017-2019 (pre-COVID pandemic, exceedances not responding to emission decreases)
- 2020-2021 (COVID pandemic period, exceedances not responding to emission decreases)
- 2022-2024 (post-COVID, exceedances not responding to emission decreases).

Maricopa County and Denver are most common among the 4 areas

GLOR is engaging in outreach efforts with our neighboring states to share our work and learn about theirs

* Naghmeh Soltani (Postdoc – U-Arizona) Unpublished Results


BVOC Emissions Sensitivity and Ground Truthing

Using MEGAN 3.2, ASU has been investigating the sensitivity of emission estimates to environmental parameters.

The take away from this analysis is that temperature is the key environmental driver to BVOC emissions

Elevated temperatures over the summer result in MEGAN predicting very high BVOC emissions which feeds into SIP modeling efforts

Changes in Isoprene Emissions in Maricopa County in June 2020							
Meteorological Variables	Multiply meteorological input values by:						
meteorological variables	0.99	0.999	1.001	1.01			
Photosynthetically Active Radiation	-0.4%	*	*	0.4%			
Pressure	-0.2%	*	*	0.2%			
Water Vapor Mixing Ratio	-0.2%	*	*	0.2%			
24 hr Rain Accumulation	*	*	*	*			
Soil Moisture	*	*	*	*			
Soil Temperature	*	*	*	*			
2 m Air Temperature	-32.0%	-3.8%	3.9%	46.2%			
Wind Speed	-0.1%	*	*	0.1%			
Notes:							
* denotes approximately 0.0% change							
• Temperature values are in K, so 1% would equate to approximately ~3K or ~3°C							

Conclusions

GLOR is designed to better understand:

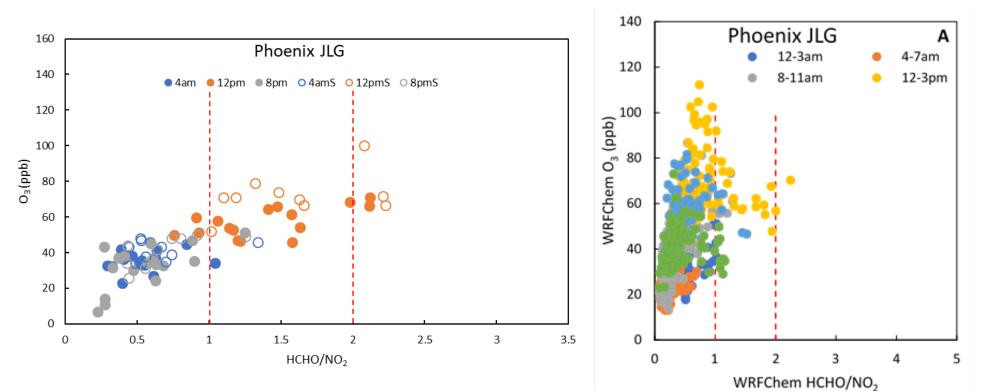
- The region's O₃ chemistry periphery vs core; daytime (when ozone is formed) vs nighttime
- Transport and other regional factors such as wildfire smoke
- Role of vertical mixing with extreme high temperatures and very high mixing depths and no aloft data (due to timing/logistics) the small mobile ozone lidars are key (i.e., smoke plumes can reside aloft and be missed by ground sampling)

Acknowledgement

GLOR was a significant team effort thanks in part to many individuals: Kelly Barr¹, Gary Dirks¹, Matt Fraser¹, Rynda Kay², Rene Nsanzineza³, Matt Pace⁴, Ron Pope⁵, Matt Poppen⁶, Jake Swanson¹, Luke Valin², among others

¹Arizona State University, ²EPA Region 9, ³ADEQ, ⁴USDA Forest Service, ⁵MCAQD, ⁶MAG

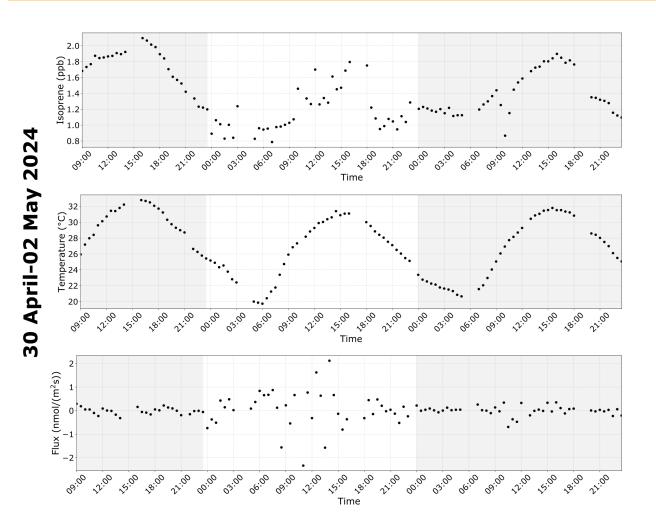
Back-up slides

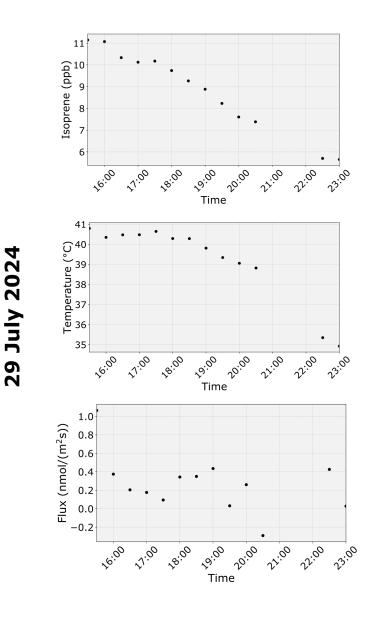


Ozone Chemistry Analysis - Ground Data and Modeling

When you look at ground-level data at JLG, there is a clear time of day impact

Nighttime data absolutely looks VOC limited (HCHO/NO2<1)


Daytime data does not appear VOC limited showing the need for time resolved data



Left: ground-level HCHO/NO2 ratios from JLG based on time of day and isolating smoke (open circles) and non-smoke (closed circle) days. Right: WRFChem model runs of summer 2021 showing same ratio

BVOC Field Flux Results at WPHX

* Trinity Olquin (LICOR Connect Meeting, February 2025, Tucson AZ) presentation

Identification of Chemical Regime

Data and Methods:

1) MCAQD Surface Concentration (CH₂O, NO₂, O₃)

Data Source: MCAQD (LCS -NO2, canister/PAMS-CH2O)Sampling Time: Hourly (June - August 2021), CH2O 8-hr every 3-daysSampling Coverage.: JLG, Buckeye, Pinnacle Peak, North Phoenix, MesaIndicator: CH2O/NO2 (FNR)

2) Satellite Retrieval Columns (CH₂O, NO₂)

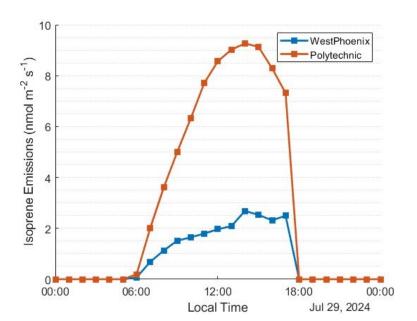
Data Source: TROPOMI (NASA) , NO2v2.20 (qa>0.75), CH2Ov2.01 (qa>0.5)Sampling Time: Daily (2019-2022), 130pmSampling Coverage.: Global (~7km)Indicator: CH2O/NO2 (FNR)

3) Model Surface Concentration (CH₂O, NO₂, O₃)

Data Source: WRF-Chem4.4 (NEI 2017, FINN2.5), MDA8: AQS DailySampling Time: Hourly (Jun 2017-2021, Apr-Aug 2017)Sampling Coverage: Arizona (3 km)Indicator: CH₂O/NO₂ (FNR)

4) Surface Site Concentration (O₃, NO₂)

Data Source: USEPA AQS - ≤ 0 missing, <MDL=0.5MDL</th>Sampling Time: Hourly (2015-2021)Sampling Coverage: JLG, Children's Park, Yuma, Alamo, Grand Canyon, ChiricahuaIndicator: Weekend/Weekday variation (Weekend Effect: VOC-Limited)

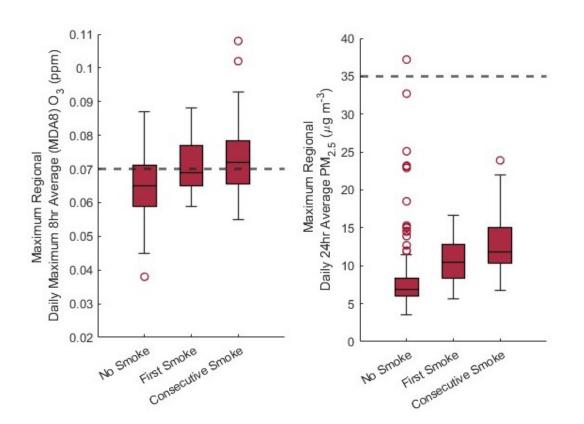

Source: Nussbaumer and Cohen, EST, (2020) weekend weekday ŏ of Production Increasing VOC Nitrogen Oxides NO_y NO, limited transition VOC limited regime regime

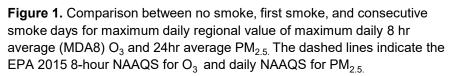
OZONE PRODUCTION DYNAMICS

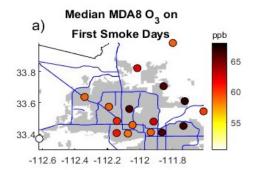
Summer 2024 BVOC Emissions Modeling

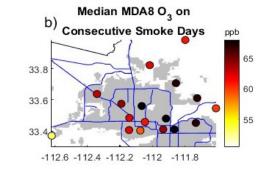
MEGAN shows dramatically higher BVOC emissions at elevated temperatures.

(tons) AAA (tons) 320 September August across 300 July 250 Emissions 200 June Daily Isoprene 150 May 100 50 April 0 30 20 25 35 40 10 15 Mean Daily Temperature across NAA (°C)


April - September, 2024


To corroborate these modeled emissions, ASU undertook field flux measurements at two sites (WPhx and ASU Polytechnic) in summer 2024 and will be out in the field in summer 2025 as part of GLOR.


450



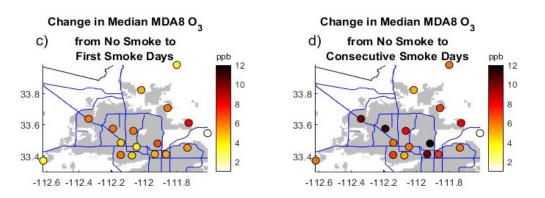

Impact of Woodsmoke Episodes

Figure 2. Median values of Maximum Daily 8hr Average (MDA8) O_3 for measurement sites across Metro Maricopa County for first smoke (a) and consecutive smoke days (b). Shown in panels (c) and (d) are the changes in median MDA8 O_3 from no smoke to either first smoke or consecutive smoke days. Census-defined urban areas are shown in grey, major roads are in blue, and county boundaries are in black.

* Braun and Fraser (2025) submitted for publication in Atmos. Environ.

BVOC Field Flux Measurements

Eddy Covariance uses atmospheric motion and pollutant concentrations to calculate flux from the surface

High-speed (≥ 10 Hz) measurements of wind speed/direction/sonic temperature (all measured by 3D sonic anemometer) and gas concentrations (measured by fast gas analyzer)

Additional sensors measure weather, radiation, vegetation, & soil variables

p= dry air density w= vertical wind speed s= gas mixing ratio (gas mass/dry air mass)

Flux

concentration/amount of gas of interest moving through unit area/per unit time

* Trinity Olquin (AGU Fall Meeting, December 2024, Washington DC) presentation