PM Source Apportionment Modeling for PM NAAQS Implementation

AAPCA Fall Meeting Raleigh, NC August 29, 2024

Gregory Stella Alpine Geophysics, LLC

Implementation Timeline: Designations, SIPs, and Permitting

EPA <u>memo</u>: "Initial Area Designations for the 2024 Revised Primary Annual Fine Particle National Ambient Air Quality Standard" (February 7, 2024)

May 6, 2024: Rule effective date; PSD permitting

- January 1, 2025: Air agencies must notify EPA of intent to submit exceptional events demonstration(s)
- February 7, 2025: Deadline for states and tribes to submit attainment recommendations based on a five-factor analysis

February 7, 2025: Exceptional events demonstrations due with attainment recommendations

October 9, 2025: EPA '120-day letters' with initial area designations

February 6, 2026: EPA formal attainment designations

-> Option to extend designations process by up to one year

February 2027: 'Infrastructure' and Good Neighbor SIPs due

August 2027: Nonattainment area SIPs due

2032: Attainment deadline for Moderate nonattainment areas

Nonattainment for $PM_{2.5}$ NAAQS at 9.0 $\mu g/m^3$

EPA's Monitored County Projection to 2032 (left) and Expanded to CBSAs (right)

Counties Projected to Exceed in Analytical Baseline for the Revised and Alternative Standard Levels of $10/35\,\mu g/m^3$, $9/35\,\mu g/m^3$, and $8/35\,\mu g/m^3$

187 counties in nonattainment when expanded to CBSA

Counties That Will Still Need Controls in 2032 for $PM_{2.5}$ NAAQS at 9.0 $\mu g/m^3$

Counties with Sufficient Identified Reductions to Meet 9/35 Counties Still Needing Reductions to Meet 9/35

Counties Projected to Exceed in Analytical Baseline for the Revised and Alternative Standard Levels of $10/35\,\mu g/m^3$, $9/35\,\mu g/m^3$, and $8/35\,\mu g/m^3$

Counties that Still Need PM_{2.5} Emissions Reductions for Revised Standard Levels of $9/35 \ \mu g/m^3$

Project Objective, Processing, Methods, Configuration, Documentation

- Alpine Geophysics adapted an EPA developed nationwide one-atmosphere photochemical grid modeling platform (2016v3 + projections) to assess identified source region and group combinations and to report the relative PM_{2.5} impact from each of these combinations on downwind monitor locations
- We performed a PM source apportionment modeling run using the Comprehensive Air-quality model with extensions (CAMx) Particulate Matter Source Apportionment Technique (PSAT) algorithms
- Particulate Source Apportionment Technology Analysis of PM_{2.5} for Multiple Domains and Categories - Final Report, Alpine Geophysics, July 2024
 https://www.midwestozonegroup.com/technical-support-documents

PSAT Simulation Results

- Base case 2026 DV calculated used EPA methods
- Look at relative contribution of source sector at monitor from modeled concentrations by traced species and as whole
- Relative contribution using EPA attainment test tool (SMAT-CE) and ratio of averaged modeled tag concentration to base case total
- Traced Species = sulfate + nitrate + ammonium + OC + EC
- Non-Traced Species = secondary organic aerosols + sea salt + particle bound water + blank mass

Tagged Source Categories

Ag dust (livestock) Ag dust (tilling) Ag Fires Ag Nonroad Airports All Other EGUs All Other Fuel Combustion Biogenics Biomass Fuel Combustion Boundary Conditions C1 & C2 & C3 Marine Canadian & Mexican Anthropogenic Canadian & Mexican Fires Cement Manufacturing Coal Fuel Combustion Coal-Fired EGUs Commercial Cooking Construction Construction Diesel Vehicles Fertilizer Initial Conditions Lawn & Garden Livestock Mining Non-diesel Vehicles Oil & Gas Other Non-Point Other Nonroad Paved Roads Petroleum Refineries Prescribed Fires Pulp & Paper Railroads Rec Marine Residential Wood Combustion Stationary Non-EGU Unpaved Roads Waste Disposal Wildfires

2026v3 Projected Annual $PM_{2.5}$ DV (µg/m³)

2023 Design Value Interactive Map – Annual PM_{2.5} Design Values

PSAT Results Analysis

- Processed data to provide speciated relative contribution of contribution by species and category
- Data available for total PM_{2.5}, particulate sulfate, particulate nitrate, elemental carbon, organic carbon, and crustal material
- Presentation today focuses on result output which can be generated for all monitors in CONUS modeling domain
 - Appendix B of Alpine's PSAT TSD

Relative Contribution by PM_{2.5} Species and Monitor

131210056: Fulton, Georgia: 2026 Annual PM2.5 DV (ug/m3) ->11.49

Top 10 Relative Contributing Categories and Traced $PM_{2.5}$ Species

131210056: Fulton, Georgia			2026 A	11.49						
	Relative Contribution (ug/m3)									
Top 10 Categories	Species Total	S04	NO3	EC	00	NH4	CRU			
Commercial Cooking	1.267	0.003	0.000	0.062	1.188	0.001	0.012			
Residential Wood Combustion	1.063	0.006	0.001	0.081	0.964	0.001	0.010			
Prescribed Fires	0.637	0.023	0.003	0.030	0.574	0.005	0.002			
Boundary Conditions	0.549	0.319	0.006	0.012	0.075	0.059	0.078			
Coal-Fired EGUs	0.349	0.284	0.005	0.002	0.001	0.049	0.007			
Non-diesel Vehicles	0.310	0.018	0.006	0.107	0.148	0.005	0.026			
Wildfires	0.309	0.012	0.001	0.016	0.277	0.002	0.000			
Diesel Vehicles	0.300	0.017	0.013	0.199	0.057	0.007	0.007			
Waste Disposal	0.298	0.013	0.001	0.050	0.220	0.003	0.011			
Paved Roads	0.246	0.004	0.000	0.009	0.080	0.001	0.153			
SO4 = Particulate Sulfate										
NO3 = Particulate Nitrate										
EC = Elemental Carbon										
OC= Organic Carbon										
NH4 = Ammonium										
CRU = Crustal Material										

Table 3-7Summary of Estimated PM2.5 Emissions Reductions from CoST by
Inventory Source Classification Code Sectors for Alternative Primary
Standard Levels of 10/35 μg/m³, 10/30 μg/m³, 9/35 μg/m³, and 8/35
μg/m³ in 2032 (tons/year)

Sector	SCC Sector	10/35	10/30	9/35	8/35
Non-EGU	Agriculture - Livestock Waste	0	6.2	6.8	6.8
Point	Fuel Combustion -	0	0	0	15.6
	Commercial/Institutional Boilers - Biomass				
	Fuel Combustion -	0	0	8.0	8.0
	Commercial/Institutional Boilers - Coal				
	Fuel Combustion -	0	0	0	85.9
	Commercial/Institutional Boilers - Natural				
	Gas				
	Fuel Combustion -	64.7	64.7	64.7	69.8
	Commercial/Institutional Boilers - Other		-		
	Fuel Combustion - Industrial Boilers, ICEs -	0	76.0	5.2	402.2
	Biomass				244.2
	Fuel Combustion - Industrial Boilers, ICEs -	0	0	16.4	211.2
	Coal	6.4	75.4	01.7	405.0
	Fuel Combustion - Industrial Boilers, ICEs -	6.1	/5.4	81.7	405.8
	Natural Gas	0	0	0	10 1
	Fuel Combustion - Industrial Boilers, ICEs - Oil	0	U	0	10.1
	Fuel Combustion - Industrial Boilers, ICEs -	110.9	140.7	689.5	1.023.9
	Other				,
	Industrial Processes - Cement	0	0	89.8	688.5
	Manufacturing				
	Industrial Processes - Chemical	29.3	40.3	136.5	953.8
	Manufacturing				
	Industrial Processes - Ferrous Metals	142.8	150.1	836.0	2,378.0
	Industrial Processes - Mining	0	7.4	239.4	326.9
	Industrial Processes - Non-ferrous Metals	55.9	55.9	502.1	918.0
	Industrial Processes - Not Elsewhere	304.3	456.1	2,169.9	6,818.0
	Classified				
	Industrial Processes - Petroleum Refineries	178.5	216.6	875.8	2,204.2
	Industrial Processes - Pulp & Paper	0	18.3	119.5	848.1
	Industrial Processes - Storage and Transfer	8.9	18.0	186.7	887.4
	Waste Disposal - Excavation/Soils Handling	0	0	0	5.8
	Waste Disposal - General Processes	0	0	7.0	7.0
	Waste Disposal - Landfill Dump	0	0	0	5.5
Oil & Gas	Industrial Processes - Not Elsewhere	0	0	0	3.6
Point	Classified				
	Industrial Processes - Oil & Gas Production	0	0	0	54.9
	Industrial Processes - Petroleum Refineries	0	0	0	1.8

"For the revised standard levels of 9/35 μg/m³, the inventory sectors with the most potentially controllable emissions are the non-point (area) and area fugitive dust sectors. " – PM NAAQS RIA

Sector	SCC Sector	10/35	10/30	7735	8/35
Non-Point	Commercial Cooking	950.2	1,176.5	2,336.9	6,823.5
(Area)	Fuel Combustion	16.3	20.2	52.8	258.6
	Commercial/Institutional Boilers - Biomass				
	Fuel Combustion -	0	0	0	0.5
	Commercial/Institutional Boilers - Coal				
	Fuel Combustion -	18.9	22.2	49.8	95.5
	Commercial/Institutional Boilers - Natural Gas				
	Fuel Combustion -	0	0	3.0	14.4
	Commercial/Institutional Boilers - Oil				
	Fuel Combustion - Industrial Boilers, ICEs - Biomass	66.0	103.3	345.0	1,499.0
	Fuel Combustion - Industrial Boilers, ICEs - Coal	0	2.4	17.8	39.1
	Fuel Combustion - Industrial Boilers, ICEs - Natural Gas	4.0	4.0	32.7	65.5
	Fuel Combustion - Industrial Boilers, ICEs - Oil	1.0	1.0	1.0	5.4
	Fuel Combustion - Industrial Boilers, ICEs - Other	2.0	2.0	2.0	2.0
	Industrial Processes - Chemical Manufacturing	0	0	77.4	199.1
	Waste Disposal - All Categories	603.2	880.0	2,641.3	14,623.5
	Waste Disposar - Residential	109.2	360.5	709.6	3,725.4
Residential Wood	Fuel Combustion - Residential - Wood	296.2	555.6	1,275.9	4,193.4
Combustion					
Area Source	Dust - Paved Road Dust	199.9	611.0	768.9	4,903.3
Fugitive		392.7	1,319.3	861.3	6,523.6
Dust	Dust - Unpaved Road Dust	2 5 6 1 0	6 202 7	15 210 0	61 220 7
Iotai		3,561.0	0,383./	15,210.0	01,320.7

Source: https://www.epa.gov/system/files/documents/2024-02/naaqs_pm_reconsideration_ria_final.pdf

Relative Contribution by PM_{2.5} Species and Monitor

SO4 NO3 FC OC NH4 CRU

Relative Contribution by PM_{2.5} Species and Monitor

Top 10 Relative Contributing Categories and Traced PM_{2.5} Species

482150043: Hidalgo, Texas			2026 A	11.14						
	Relative Contribution (ug/m3)									
Top 10 Categories	Species Total	SO4	NO3	EC	00	NH4	CRU			
Boundary Conditions	3.513	0.900	0.026	0.094	1.507	0.185	0.800			
Canadian & Mexican Anthropogenic	1.105	0.298	0.013	0.093	0.508	0.063	0.129			
Commercial Cooking	0.546	0.000	0.000	0.013	0.527	0.000	0.006			
Prescribed Fires	0.367	0.004	0.000	0.009	0.350	0.001	0.002			
Paved Roads	0.231	0.001	0.000	0.004	0.075	0.000	0.150			
Residential Wood Combustion	0.227	0.000	0.000	0.009	0.215	0.000	0.003			
Waste Disposal	0.163	0.002	0.000	0.015	0.132	0.000	0.013			
Unpaved Roads	0.132	0.001	0.000	0.000	0.027	0.000	0.104			
Non-diesel Vehicles	0.128	0.003	0.001	0.027	0.080	0.001	0.016			
Coal-Fired EGUs	0.109	0.082	0.001	0.001	0.003	0.016	0.005			
SO4 = Particulate Sulfate										
NO3 = Particulate Nitrate										
EC = Elemental Carbon										
OC= Organic Carbon										
NH4 = Ammonium										
CRU = Crustal Material										

Relative Contribution by PM_{2.5} Species and Monitor

160590004: Lemhi, Idaho: 2026 Annual PM2.5 DV (ug/m3) ->12.53

BoundaryConditions

wite Conditions

Top 10 Relative Contributing Categories and Traced $PM_{2.5}$ Species

160590004: Lemhi, Idaho			2026 A	12.53						
	Relative Contribution (ug/m3)									
Top 10 Categories	Species Total	S04	NO3	EC	00	NH4	CRU			
Wildfires	1.984	0.019	0.000	0.169	1.780	0.004	0.012			
Boundary Conditions	1.445	0.499	0.077	0.127	0.358	0.109	0.274			
Prescribed Fires	0.655	0.005	0.001	0.074	0.573	0.001	0.001			
Residential Wood Combustion	0.586	0.001	0.001	0.055	0.527	0.000	0.003			
Unpaved Roads	0.356	0.002	0.000	0.003	0.108	0.000	0.243			
Ag dust (tilling)	0.108	0.000	0.000	0.003	0.019	0.000	0.086			
Diesel Vehicles	0.097	0.000	0.011	0.064	0.018	0.003	0.001			
Commercial Cooking	0.093	0.000	0.000	0.005	0.087	0.000	0.000			
Waste Disposal	0.087	0.001	0.000	0.017	0.066	0.000	0.002			
Canadian & Mexican Anthropogenic	0.081	0.016	0.006	0.008	0.040	0.005	0.006			
SO4 = Particulate Sulfate										
NO3 = Particulate Nitrate										
EC = Elemental Carbon										
OC= Organic Carbon										
NH4 = Ammonium										
CRU = Crustal Material										

Frequency of Category Modeled in Top 10

	Number of Times in Top 10								
Category	All Conc #	All Conc %	> 9.0 µg/m³ #	> 9.0 µg/m ³ %					
All Monitors	834	-	306	-					
Boundary Conditions	834	100%	306	100%					
Residential Wood Combustion	818	98%	303	99%					
Commercial Cooking	669	80%	296	97%					
Waste Disposal	643	77%	216	71%					
Coal-Fired EGUs	614	74%	196	64%					
Prescribed Fires	582	70%	186	61%					
Stationary non-EGUs	555	67%	188	61%					
Wildfires	480	58%	182	59%					
Can/Mex Anthopogenic	432	52%	111	36%					
Biomass Fuel Combustion	373	45%	147	48%					
Diesel Vehicles	373	45%	170	56%					
Non-Diesel Vehicles	318	38%	163	53%					

Species-Category Specific Relative Modeled Contribution Example: Organic Carbon from Commercial Cooking

20

Species-Category Specific Relative Modeled Contribution Example: Organic Carbon from Residential Wood Combustion

21

Species-Category Specific Relative Modeled Contribution Example: Organic Carbon from Prescribed Fires

22

Inventory Issues Example: Unpaved Roads – Consistency in Reporting

Annual PM_{2.5} Emissions- 2023v2 Projections

Crustal PM_{2.5} Concentrations - 2026v3 Projections

		State FIP	State	 EIS Sector 	🕶 Pollutant 耳 20	016 🔽 2017	2018	▼ 2	019 🔽 2020	▼ 20)21 🔽 2	022 💌
		1	Alabama	Dust - Unpaved Road Dust	t PM25-PRI	5,199	4,582	4,090	4,709	3,125	4,442	4,681
		2	Alaska	Dust - Unpaved Road Dust	t PM25-PRI	1,148	1,191	1,275	1,959	627	3,738	11,352
FIPSST 18 Indiana still		4	Arizona	Dust - Unpaved Road Dust	t PM25-PRI	4,296	4,445	4,476	4,395	1,265	4,220	3,775
Th SST 10, mulana, Still		5	Arkansas	Dust - Unpaved Road Dust	t PM25-PRI	5,859	6,070	5,289	4,951	3,750	6,201	6,247
missing in EDA's 2022 NEL		6	California	Dust - Unpaved Road Dust	t PM25-PRI	5,410	5,484	5,901	5,387	5,293	6,194	5,945
IIIISSIIIB III EPAS ZUZZ NEI		8	Colorado	Dust - Unpaved Road Dust	t PM25-PRI	5,043	5,234	5,476	4,829	2,534	5,563	4,613
		9	Connecticut	Dust - Unpaved Road Dust	t PM25-PRI	148	145	123	134	108	153	145
	、 、	12	Florida	Dust - Unpaved Road Dust	t PM25-PRI	12,211	12,479	12,716	12,902	1,880	3,751	3,441
		13	Georgia	Dust - Unpaved Road Dust	t PM25-PRI	4,252	4,084	3,364	3,853	2,779	3,848	4,203
See also: MO. PA. TN		15	Hawaii	Dust - Unpaved Road Dust	t PM25-PRI	166	169	168	155	181	159	245
		16	Idaho	Dust - Unpaved Road Dust	t PM25-PRI	17,578	16,740	18,068	17,590	6,776	15,505	11,512
	X	17	Illinois	Dust - Unpaved Road Dust	t PM25-PRI	16,535	19,253	15,807	13,501	10,072	16,996	17,547
		19	Iowa	Dust - Unpaved Road Dust	t PM25-PRI	5,069	6,353	4,274	3,877	3,222	6,255	6,005
		20	Kansas	Dust - Unpaved Road Dust	t PM25-PRI	21,787	23,289	21,406	19,355	8,241	20,358	20,237
		21	Kentucky	Dust - Unpaved Road Dust	t PM25-PRI	1,134	1,087	860	1,016	734	1,016	1,294

Observations

- In urban area locations, anthropogenic emissions from commercial cooking, residential wood combustion, and waste disposal have the highest percentage of modeled PM_{2.5} concentrations
- At monitors near international borders, total traced species from boundary conditions and Canadian and Mexican anthropogenic categories dominate the modeled contribution to the overall annual PM_{2.5}
- At remote mountain monitors, wildfire, boundary conditions, prescribed fires, and residential wood combustion dominate the composition to the total annual PM_{2.5} concentrations

Observations (con't)

- Modeled attainment of 9.0 μg/m³ annual NAAQS may prove challenging in areas where limited anthropogenic control options are available
- Current, available modeling may prove to be best option in determining relative contributing categories until (and if) EPA generates category-specific PM source apportionment modeling with 2022v1 platform
- Additional findings in Alpine TSD (not presented here) corroborate EPA's findings of NAAQS exceedances being driven by the urban $PM_{2.5}$ increment and the relatively high responsiveness of $PM_{2.5}$ concentrations to primary $PM_{2.5}$ emission reductions within these urban cores

Gregory Stella Managing Partner Alpine Geophysics, LLC <u>gms@alpinegeophysics.com</u> 828-675-9045