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Overview of Al-based applications in green-house gas (GHG)
reduction and system resilience from urban transportation

EPA's Smart Urban Design (SUD) platform with integrated model
simulation as digital twins for urban infrastructure planning and
engineering

Two practical examples of Al-enabled simulation: Urban-wide
GHG emission and project-level transportation optimization

Summary and outlooks

Disclaimer

This presentation has been subjected to the Agency's
administrative review and has been approved for external
publication. Any opinions expressed in this presentation are those
of the authors and do not necessarily reflect the views of the
Agency; therefore, no official endorsement should be inferred.



Urban As GHG Sources

Burning ember diagrams of regional & global risk assessments

IPCC WGII AR6 FGD (2022)
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Urban Systems and Climate Actions

= Urban transportation and water management are the two interrelated major infrastructure systems

» Land-based transportation is a major source of criteria pollutants (CP) and GHG emissions, and it is rapidly
evolving (e.g., electrification, autonomous driving, mass transit, walkable communities, etc.)

= Transport sector has the third largest potential for GHG reduction and air pollution reduction as the co-benefit
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EPA Research on Urban Adaptation

- Smart Urban Designer (SUD) tools

= SUD tools include Integrated
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Al Role as Objective-specific

Fuzzy logic, pattern recognition, etc.

Regenerative Al

Hybrid systems, physical-informed

ANN, GA, ML ... i i
Decision support systems (DSS) PlelEl el
Robust statistics Sensor, ubiquitous data Agent-based
| | | =
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Process control ...

Multi-objective optimization

Henk van Zuylen (2012) in Transportation Res. Circular No.E-C168

Systems control ...

“A general distinction between “ordinary” computer systems
and Al is the complexity of the Al computer systems,
including” the complexity of Al program, the algorithms, and
the physical processes.

Engineering applications of Al.. are more on “weak” Al, the
computer applications that deal with limited application
areas... and seem to be some intelligent features...”

Decision support ...

Project-level adaptive
management (CV in
traffic flow)

Regional-level adaptive
planning (efficiency, GHG, EJ)



Al in Urban Planning and

Engineering

Transportation simulations

Scenario Development - us'ng A'r-SUS TAIN
| Base Year Infrastructure Information and Regional Daa I
| ChmlgesinDengmphicnudSEFﬂctds I= K'i_ -. - C.Omplelx and Int.egrated. mOdel )
v k‘,f,.-}_a_ simulations as digital twins for regional-
‘ Land Use Projection (CA-Maskov Model) I _ - .
. ! level and/or project-level analysis
i Target Year Demographic & SE Projection . .
| - © i D R T = Scenario developments for climate, land
- ¥ o Display & Visualization : R :
T of Scenario Al use, demqgraphlc projections with
|_ Travel Demand Forecasting (VISTM Model) ] esults uncertalntles
. | . Base,r"fc:gget Year Resuts
AverageSpeed Bised Trfic Enision Esiion T = Physics-informed Al in scenario
_____ i ' development and model parameterization
Project Level Analyvsis o :& ] . .
— i\ A Two Al-application examples
| Conzestion Identificarion Model | o
| v 4 | Cont = Regional level analysis for adaptation
i | Microscopic Traffic Simuhtion (VISSIMModel) | i\ Measures 9 . 10 .
| 3 A scenarios in Cincinnati metro area:
e MovEs Mocer [ , Mobility and emissions
| 1

= Project level analysis for adaptation:
Efficiency and emission



Example #1: Regional-Level

Traffic Analysis

= Air-SUSTAIN offers a digital twin for analyzing
development scenarios
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Regional-Level Analysis Results

= Compared to base year (2010), traffic patterns
for $S1-S3 policies would differ by 2030

= Smart growth S3 (multi-center, mass transit)
offers better transportation efficiency, energy
consumption, and GHG avoidance by ~18%

= Now Cincinnati metro area developed into multi-
centers, partially along S2 scenarios. And no
consideration of vehicle electrification

= Further analysis on water infrastructure
adaptation given the urban configuration

= Such digital twin model can be improved by
reinforcement learning (RL) with updated data in
model & parameterizations — future work

Peak Hour (7-9am) Simulation
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Al Role as Objective-specific

Fuzzy logic, pattern recognition, etc.

Regenerative Al

Hybrid systems, physical-informed

ANN, GA, ML ... Decision support systems (DSS) Digital twin
Robust statistics Sensor, ambiguous data Agent-based
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Multi-objective optimization

Henk van Zuylen (2012) in Transportation Res. Circular No.E-C168

Systems control ...

“A general distinction between “ordinary” computer systems
and Al is the complexity of the Al computer systems,
including” the complexity of Al program, the algorithms, and
the physical processes.

Engineering applications of Al.. are more on “weak” Al, the
computer applications that deal with limited application
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Example #2: Connected Vehicles

in Traffic Management
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Connected Vehicles
—Models and Principles

Name

a Reaction time

Estimation
errors

Temporal
anticipation

Spatial
anticipation

Desired
distance

Lane-change
desire

Desired
speed

CV generates regulatory, warning or advisory messages

Overview for Connected Vehicles

Definition/Comments
Delay between the emergence a traffic stimulus and
the execution a relevant action.

The following distance and relative speed to the leader
can only be estimated with limited accuracy.

Drivers can predict traffic situation for the next few
seconds.

Drivers consider the immediate preceding and further
vehicles ahead.

Desired following distance a driver tries to maintain in
the car-following state.

Motivation for gaining speed advantage or continuing a
route.

The maximum speed a driver attempts to reach if there
is no constraints from other road users.

based on safety and operation information exchanged
among vehicles.

Drivers adjust behaviors once receiving the messages.

Data-driven

applications

Wei, Liu and Yang (2017)

Modeling CV Adaptive Resilience in Compliance with the Following Goals

| Operation Improvement

Safety Enhancement

| Emission Reduction

|

|

Measurements
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Change of Traffic Breakdown and Congested
Traffic Propagation at Freeway Facilities

Aggregated Effects

Reduction of disturbance
leading to traffic breakdowns

On/Off
| Ramps

Junctions

Road
Curves )

Incidents
Sites

Alternation of formation and
propagation of congested traffic

flow patterns
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Feedback

On high traffic load
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Scenario
Appraisal

Lane-Changing
(LC) Behaviors
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Individual Driver Behavior

Car-Following (CF) Behaviors

Il m

V2X Information Applied by CV

Basic safety message (BSM, such as speed, acceleration,
position and vehicle dimension) and non-BSM message (e.g.,
ramp meter status) transmitted through DSRC, Wi-Fi and

mobile wireless network

y

Envisioned Connected Vehicle Applications

Forward Freeway Merging Dynamic Speed
Collision Assistance Harmonization
Warning (FCW) System (FMAS) (SPD-HARM)
"V2V V2| "V2I
Messages Delivered to Drivers
Warmning Lane change Advisory speed
message based advisory message message for
on following for mainstream mainstream
distance drivers drivers
Y Y Y

Affected Driver Behaviors

Behaviors a, b,
c,dande

Behavior f

Behavior g




Connected Vehicles

- Models and Principles

Methodology: Modeling Traffic Flow under CV

Incorporating CV affected driver behaviors into car-following (CF) and lane-

changing (LC) model.

Reaction time, estimation errors, spatial anticipation, desired speed, and desired distance are

incorporated in the Intelligent Driver Model (IDM) CF model developed by Kesting, A., Treiber, M.,

& Helbing, D. (2010).
Acceleration Speed Spacing & relative
term speed term
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Case Study on Connected Vehicles

Case Study: NB I-71 near Exit 12 at Kenwood, Cincinnati

g » (L
NB freeway, 900 m A

—————

Hon-ramp, 390 mp & i

T

Site description: Data collection:

* NB I-71, near Exit 12 in greater Cincinnati « Traffic count from 6-22 to 26, 2015, 3:30-
area, Ohio. 6:30pm.

* 3freeway lanes, 1 on-ramp lane. « Travel time and speed collected 2013-2015,

* Freeway peak hour volume 4400 veh/hr, 4.5% multiple weekdays, 7:00-9:00am and 4:00-
truck; 6:00pm.

* Ramp peak hour volume 950 veh/hr, 1% truck. « Travel time and speed collected using GPS

* Recurrent congestions, isolated bottleneck. equipped probe cars.

Wei, Liu and Yang (2017)



Example: Connected Vehicles

Mobility

il
=}

6.0

Case Study: Results on traffic management
and emission controls
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Al applications in urban planning and engineering are beyond the traditional “weak”
Al phase by providing advisory support to decision-making in the form of digital twin
or physics-informed Al models

EPA's Smart Urban Design (SUD) platform uses integrated model simulations of
transportation and water systems under land use, climate and development
scenarios. As a digital twin, its outcome helps decision-making in urban development
and adaptation for resilient infrastructure.

The Air-SUSTAIN model simulations allow regional-level analysis for urban
adaptation. It also enables project-level analysis in applications such as CV-enabled
traffic management to improve efficiency and GHG/CP emission reductions.

Future Al developments focused on uncertainty management and multi-objective
(e.g., traffic efficiency, climate and EJ) optimization.



Thank You!
Yang.jeff@epa.gov
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and has been approved for external publication. Any opinions expressed in
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