

Wyoming Pond Emissions Calculator (WYPEC)

2023 AAPCA Best Practice

September 27, 2023

Andrew Keyfauver, Wyoming Air Quality Division

BACKGROUND & INTRODUCTION

WYPEC MODEL BASIS – EARLY BACKGROUND

Background

- Exceedances of the 8-hr NAAQS for ozone in the Upper Green River Basin
- Facilities perform crude emission estimates for emissions inventories

Need

 WDEQ desired technically sound emission estimation methodology

Objective

 Establish correlation between pond VOC content and airborne concentrations to estimate future emissions

OUTCOME:

Develop easy-to-use software tool to predict air emissions from disposal pit water concentrations

Ozone levels plague valley

By Kaitlyn McAvoy

Ozone advisories were issued for Monday, Tuesday, Wednesday and today for the Upper Green River Basin in Sub-lette County. Ozone levels were reported to have surpassed the national threshold on Tuesday both in Boulder and Pinedale, according to the Wyoming Department of Environmental Quality Air Quality Division (DEQ-AQD), who issued the advisories. Levels were above the threshold Wednesday afternoon in Boulder, as well.

An advisory means conditions are favorable for ozone levels to rise above the 75 parts per billion (pbb) threshold, not that it has yet. Advisories are issued by noon of the day prior to when ozone is expected to form.

DEQ Public Information Officer Keith Guille said preliminary data from the monitoring station in Boulder showed ozone levels on Tuesday reached 116 ppb, and the Pinedale station recorded levels at 84 ppb for the eight-hour rolling average — both above the accepted threshold.

Ozone can have respiratory health effects, especially to those with existing respiratory conditions, children and the elderly. The DEQ-AQD suggests those people limit outdoor activities, especially in the afternoon and evening, in the release.

In Sublette County, ozone is likely to form when emissions from the gas fields, including nitrogen oxide (NOx) and volatile organic compounds (VOCs), are coupled with strong

)L AGENCIES


PRACTICE

MODEL DEVELOPMENT - Technical Approach

1

Data Collection: Air/water sampling events at multiple facilities.

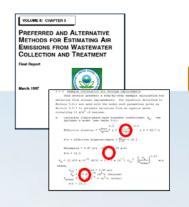
Flux Chambers

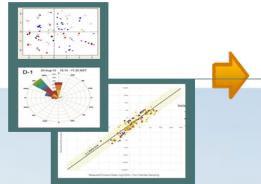
Open Path FTIR

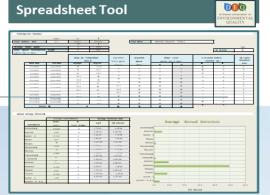
Air Sampling

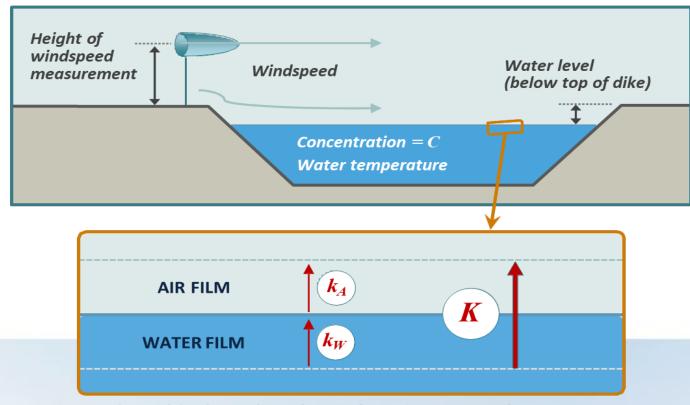
Water Sampling

On-site Meteorology





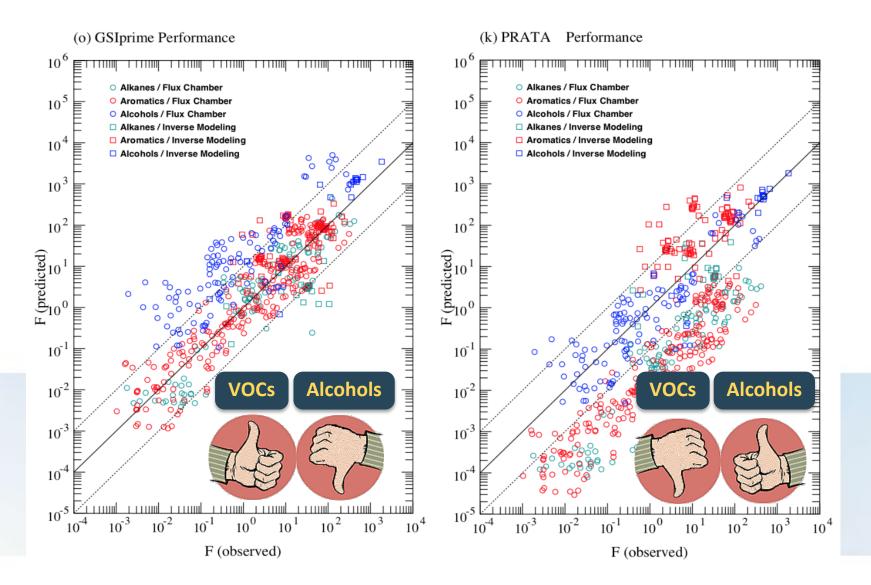



2 Predictive Model Development

TWO-FILM EMISSION MODELS

 k_W and k_A depend on chemical species, meteorology, etc.

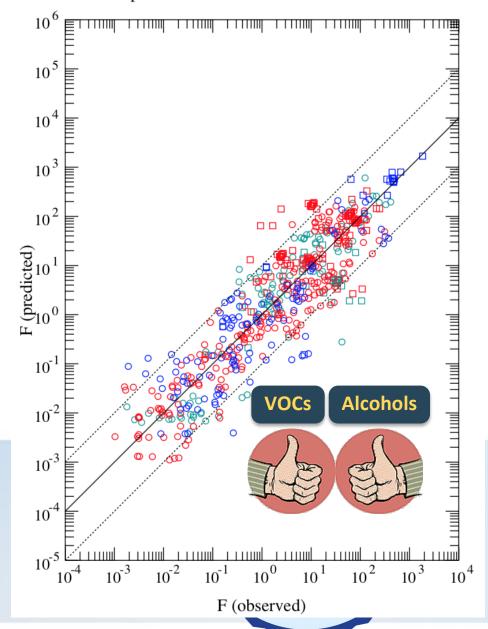
Emission flux is proportional to concentration:


$$F = K \cdot C$$

K depends on Henry's Law and combination of mass transport coefficients across a water film, k_W , and air film, k_A

$$\frac{1}{K} = \frac{1}{k_W} + \frac{1}{Hk_A}$$

OILFIELD WASTE DISPOSAL POND MODEL ANALYSIS Best-Performing Models for Different Chemical Classes



Measurements vs. Predictions

Alkanes	Methane, ethane, propane, n-butane
Aromatics	Benzene, toluene, o-xylene, m- & p-xylene, ethylbenzene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene
Alcohols	Methanol, ethanol, isopropanol

Parameter	Model	
k_A	PRATA	Hab Ctotol Initiation in
k_{W}	GSI-prime	UtahStateUniversity BINGHAM RESEARCH CENTER

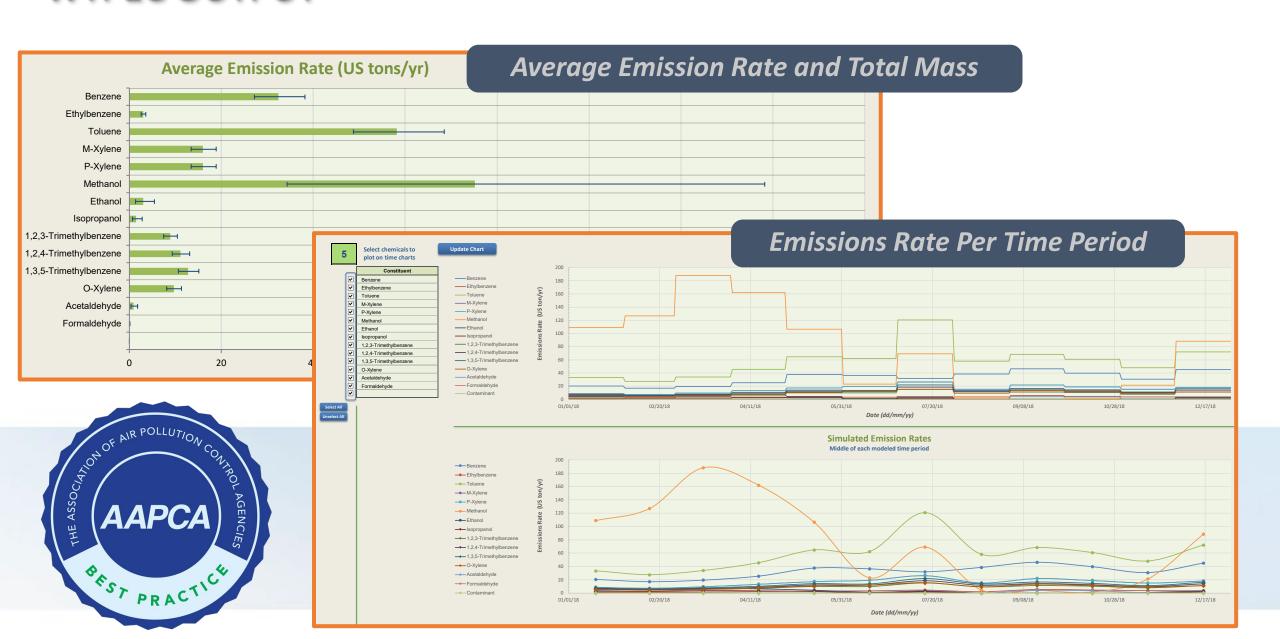
WYPEC performance with bias correction

WYPEC SPREADSHEET SOFTWARE

WYPEC INPUTS

TRIBUTE.	DODA-S	DACITIC 1	Variables

	Start Date	End Date	Avg Water Temp at Surface	Avg Wind Speed	Water Level (below top of dike)	Surface Area	% Covered by Ice	Salinity or TDS
	(mm/dd/yy)	(mm/dd/yy)	(deg C)	(m/s)	(m)	(m²)	(%)	(mg/L)
	01/01/14	01/31/14	4.0	3.3	2.5	49372	0	40000
	02/01/14	02/28/14	4.0	3.8	2.5	49372	0	40000
	03/01/14	03/31/14	4.0	4.7	2.5	49372	0	40000
2	04/01/14	04/30/14	4.0	4.9	2.5	49372	0	40000
2	05/01/14	05/31/14	8.1	4.4	2.5	49372	0	40000
	06/01/14	06/30/14	12.4	4.8	2.5	49372	0	40000
	07/01/14	07/31/14	18.3	4.2	2.5	49372	0	40000
	08/01/14	08/31/14	14.9	3.9	2.5	49372	0	40000
	09/01/14	09/30/14	11.8	3.9	2.5	49372	0	40000
	10/01/14	10/31/14	5.8	4.1	2.5	49372	0	40000
	11/01/14	11/30/14	4.0	5.1	2.5	49372	0	40000
	12/01/14	12/31/14	4.0	3.2	2.5	49372	0	40000
	Time-Weighted Average		8.0	4.2	2.5	49372	0.0	40000

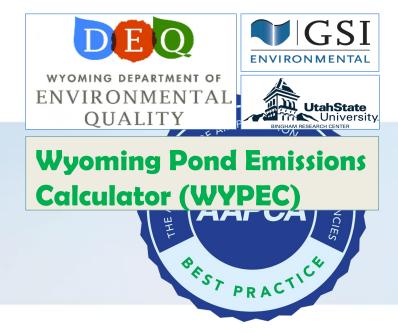

	Start Date	End Date	Acetaldehyde	-	Benzene
			Acetaldehyde	^	(mg/L)
			Benzene		(mg/L)
	01/01/14	01/31/14	Butane Cyclohexane		1.0E+1
	02/01/14	02/28/14	Cyclopentane		1.0E+1
	03/01/14	03/31/14	Decane Ethane Ethanol 1.0E+0 1.0E+0 1.0E+0		1.0E+1
	04/01/14	04/30/14		~	1.0E+1
3	05/01/14	05/31/14			1.0E+1
	06/01/14	06/30/14			1.0E+1
	07/01/14	07/31/14			1.0E+1
	08/01/14	08/31/14	1.0E+0		1.0E+1
	09/01/14	09/30/14	1.0E+0		1.0E+1
	10/01/14	10/31/14	1.0E+0		1.0E+1
	11/01/14	11/30/14	1.0E+0		1.0E+1
	12/01/14	12/31/14	1.0E+0		1.0E+1
	Time-Weighted	Average (kg/d)	1.00E+00		1.00E+01

Interface simultaneously estimates emissions for:

- 12 time periods (e.g. monthly) individual and aggregate
- 15 individual chemicals (among 50 in database)

WYPEC OUTPUT

LIMITATIONS


- Wind speed: 0-50 m/s
- Monthly ranges recommended
- Maximum 15 compounds at a time database of 50
- Must enter data in correct units (select metric or US)
- Highly dependent on Henry's Law constants can vary substantially
- Some compounds not included in calibration

Watch outs with Excel

- Macros must be enabled
- Copying/Pasting <u>values</u> from other workbooks
- Automatic vs. manual calculation
- Update time series charts after adding/removing chemicals

Questions?

