Clean Air Act Rules and Grid Planning

AAPCA 2022 Fall Business Meeting

Jonas Monast

CONVENERS' NETWORK

* HARVARD ENVIRONMENTAL AND ENERGY LAW PROGRAM

Risk Management (Cost and Reliability)

- Regulatory Risk
- Technology Risk
- Fuel Risk (price and availability)

EPA Power Sector Rules

- PM 2.5
- Mercury & Air Toxics Review
- Coal Ash Disposal Draft
- Effluent Limitation Guidelines
- GHG New Source Performance Standards (111(b))
- GHG Existing Source Performance Standards (111(d))

THE INFLATION REDUCTION ACT GENERALLY

Rhodium Power-Sector Emissions for the U.S.

Rhodium Results from RHG-NEMS Modeling

- Compares across three emissions scenarios from the "Taking Stock 2022" report
- U.S. CO₂ emissions in the power sector fall by 50% from the Current Policy baseline in their Central case.
- IRA reduces SO₂ emissions by around an additional 20% in the three emissions scenario alternatives
- IRA reduces NOx by less than SO2, presumably because coal generation falls more than gas CC

NOx Emissions (mill tons)

2021 2030

2021

IRA,

0.13 - 0.28

(59-82% reduction)

CCUS is a cost-effective option to decarbonize firm capacity required to maintain reliability

Gas plant post-combustion CCUS or, with incentives, low-carbon H2 provide most cost-effective decarbonized firm power

Source: Lazard; IEA; EPA; GTM; American Gas Foundation; Sargent & Lundy; Breakthrough Institute; BCG analysis

Leverages existing NGCC power plant infrastructure

Calpine Corporation 4

^{1.} Cost of carbon abatement assuming an existing NGCC alternative, 50% LHV efficiency; \$3.5/MMBTU NG fuel costs; 8% WACC and 20-yr lifetime; unless otherwise noted, lower limit corresponds to 85% CF and upper 30% Capacity factor 2. H2 storage sensitivity estimates H2 storage needed to accommodate demand and supply fluctuations with independently owned H2 production (vs. 3rd party or otherwise shared H2 production that is sized to meet instantaneous demand and has a lower H2 storage requirement as a result) 3. Assumes 95% capture of effluent and 16% additional power losses to drive CCUS; cost drops further for lower efficiency plants where abatement opportunity is larger 4. Ranged based on biogas costs from \$12-24/MMBTU; capacity constrained by viable feedstoks 5. BCG Hydrogen for power production model output 6. Range based on e-methane costs from \$30-50/MMBTU; nascent technology 7. Ranged based on cycles per year, 200-300; assumes \$500/kWh storage costs 8. Low end of range reflects SMR nuclear emerging technology estimate from Breakthrough Institute NuScale analysis (low technology readiness today); high end reflects Lazard LCOE analysis for existing nuclear, ~\$130-200/MWh; 9. Lazard LCOS analysis, wholesale PV+storage use case; "Long run resource adequacy under deep decarbonization pathways for CA," E3, 2019