

Using Corrected Low-Cost Sensor Data in Local Air Quality Studies

Ronald Pope, PhD April 28, 2022

Phoenix as a Testbed for Air Quality Sensors (PTAQS)

Acknowledgements to the PTAQS team:

- Andrea Clements, Sue Kimbrough*, Karoline (Johnson) Barkjohn and the EPA Office of Research and Development (ORD) Sensor Group
- Ian VonWald, formerly Oak Ridge Institute for Science Education (ORISE) post-doctoral fellows hosted by the EPA ORD
- Parikshit Deshmuk, Jacobs—deployment and technical support
- Ben Davis, Ira Domsky and the Maricopa County Air Quality Department Monitoring Group
 *Retired

PTAQS Overview

- Three phases (Nov 2018 Mar 2021)
- Phase 1: sensor collocation
- Phase 2: Larger field study using sensors in a distributive network
 - 20 PurpleAir sites, some with wind sensors
 - Mobile regulatory monitor for quality assurance
 - Four black carbon analyzers
- Phase 3: multi-sensor evaluation

Lessons Learned

- PM₁₀ data were unreliable.
- High quantity of data resulted in difficult QA.
- PM_{2.5} data had acceptable precision, but accuracy bias differed.
- Particle source affected data quality.
- PM_{2.5} data was significantly improved with correction factors.

Smoke Dominated
Stagnation
PMc Dominated
High Wind

Correction 1: Linear PM_{2.5}

Correction	R^2	RMSE (ug/m ³)	MAE (ug/m ³)
None	0.8649	8.74	4.54
PM _{2.5}	0.8649	4.59	2.65

Corrected PurpleAir (PA) $PM_{2.5} = 0.68 * PA PM_{2.5} + 2.42$

Correction 2: PM_{2.5} + Relative Humidity (RH)

Correction	R^2	RMSE (ug/m ³)	MAE (ug/m ³)
None	0.8649	8.74	4.54
PM _{2.5}	0.8649	4.59	2.65
PM _{2.5} + RH	0.8698	4.50	2.66

Corrected PA $PM_{2.5} = 0.70 * PA PM_{2.5} - 0.100 * PA RH + 4.74$

Correction 3: PM_{2.5} + RH + Season

Fall / Winter (October – March): Corrected PA $PM_{2.5} = 0.677 * PA PM_{2.5} - 0.1016 * PA RH + 4.8934$ Spring / Summer (April – September): Corrected PA $PM_{2.5} = 1.8965 * PA PM_{2.5} - 0.0778 * RH + 0.7519$

Correction 4: PM_{2.5} + RH + PM_{Coarse} (PM_c)

Corrected PA $PM_{2.5} = 0.6801 * PA PM_{2.5} - 0.0901 * PA RH + 0.049 * Non-col. PM_C + 3.79$

*Non-col. PMc = Average Regional PMcoarse as determined by the average concentration reported by regulatory monitors in the city.

Correction 5: PM_{2.5} + RH + PM_C + Season

Correction	R^2	RMSE (ug/m ³)	MAE (ug/m ³)
None	0.8649	8.74	4.54
PM _{2.5}	0.8649	4.59	2.65
PM _{2.5} + RH	0.8698	4.50	2.66
PM _{2.5} + RH + Season	0.8553	4.78	2.91
PM _{2.5} + RH + Non- col. PM _C	0.884	4.35	2.50
PM _{2.5} + RH + Non- col. PM _c + Season	0.873	4.59	2.77

Fall / Winter (October – March):

Corrected PA $PM_{2.5} = 0.670 * PA PM_{2.5} - 0.094 * RH + 0.079 * PM_{C} + 3.872$ Spring / Summer (April – September): Corrected PA $PM_{2.5} = 1.589 * PA PM_{2.5} - 0.046 * RH + 0.186 * PM_{C} - 1.026$

Utilizing PTAQS Data for the 2019-2020 Winter Burn Study

PTAQS Monitoring Network for the 2019-2020 Study

★ Sites with only PurpleAir $PM_{2.5}$ sensors ★ Sites with permanent regulatory monitors and PurpleAir $PM_{2.5}$ sensors

Spatial Patterns of PM_{2.5} **Weekdays and Weekends**

Weekdays: Monday - Thursday Weekends: Friday - Sunday

Monthly PM_{2.5} Average by Time of Day

12:00 a.m. - 5:59 a.m.

12:00 p.m. - 5:59 p.m.

6:00 a.m. - 11:59 a.m.

6:00 p.m. - 11:59 p.m.

New Year's Eve 2019 and New Year's Day 2020

Legend

- Air Quality Index
- Symbolism corresponds to AQI thresholds from the 24-hour PM2.5 standard.
- The hazardous category (AQI >300) is further divided into two categories
 - Maroon (AQI 301 to 418)
 - Black (AQI > 418)

Green	Good	0 to 50
Yellow	Moderate	51 to 100
Orange	Unhealthy for Sensitive Groups	101 to 150
Red	Unhealthy	151 to 200
Purple	Very Unhealthy	201 to 300
Maroon	Hazardous	301 and higher

Thank you.

Ronald Pope, PhD Ron.Pope@Maricopa.gov

