

#### **ENVIRONMENTAL PROTECTION DIVISION**

# AAPCA Best Practice: Georgia PSD Emissions Inventory

#### **Jim Boylan**

Manager, Planning and Support Program Georgia EPD - Air Protection Branch

**Eric Cornwell** Manager, Stationary Source Permitting Program Georgia EPD - Air Protection Branch

AAPCA 2020 Virtual Fall Meeting Series: Air Quality Policy & Technical Updates September 8, 2020



# BACKGROUND

- The issuance of air permits for new and modified Title V sources typically requires AERMOD modeling to determine if the proposed project will result in a violation of the NAAQS or PSD Increment.
- Inputs to the AERMOD model include meteorological data and emission parameters (emission rates, site elevation, stack locations, stack height, stack diameter, exit velocity, and exit temperature).
- If the modeled concentrations from the project alone are above the Significant Impact Levels (SILs), then cumulative NAAQS and PSD Increment modeling is required.
- Cumulative modeling requires the inclusion of emissions from offsite sources.



# **OFFSITE EMISSION INVENTORIES**

- The process of developing an offsite emissions inventory typically involves a time consuming, project-specific, manual review of hard-copy files by the applicant.
- The new process involves an online, searchable, public, continuously updated electronic database and web application providing all the required emissions inventory data.





#### **PROJECT DELIVERABLES**

- Data Quality Assurance Project Plan (QAPP)
- Short-Term (e.g., 1-hour and 24-hour) and Long-Term (e.g., annual) Emissions Averaging Procedure Documents
- Emission Inventory Data and Notebook
- Emissions Inventory Relational Database
- Online Interactive Emissions Inventory Web
  Application





#### **EMISSIONS DATABASE**

- This database contains potential emissions for five pollutants ( $PM_{10}$ ,  $PM_{2.5}$ , NOx,  $SO_2$ , and CO) for all Title V and Synthetic Minor sources in Georgia.
- The contractor initially populated the database with 389 Title V and 792 SM sources.
- The database is routinely updated by the GA EPD Stationary Source Permitting Program (SSPP) as new permits are issued.



# **POTENTIAL EMISSIONS**

- The PSD inventory tool uses potential emissions, which was required by Appendix W at the time of development.
- Since then, Appendix W has been updated to allow the use of "typical actual" or "modified allowable" emissions. GA EPD evaluates these requests on a case-by-case basis.
- Therefore, our tool is generally more conservative than what EPA may allow for modeling.



#### **SM SOURCES**

- The inventory initially only included site-wide annual PTE emissions and no stack data.
- Stack data can be added to the inventory as SM sources are modeled by applicants.
- 98% of the SM PTE information was transcribed from agency compiled permit narratives.



# **TITLE V SOURCES**

- The inventory included Unit-by-Unit release point (stack) specific PTE for short term (lb/hr), long term (lb/hr), and annual (tpy) emissions.
- All stack parameters (stack locations, stack height, stack diameter, exit velocity, and exit temperature) were taken from the 2011 NEI.
- 85% of the PTE information was transcribed from the facility's own PTE submittals.
- In cases where PTE information was not available, it was calculated and documented.
- Emergency engines, fugitive emissions, and VOC/HAP sources were excluded from the initial inventory.



# **ONLINE WEB APPLICATION**

- The applicant can simply enter the location (lat/long or address) and search radius from the project location to get an Excel file and/or an AERMOD-ready input file containing all the captured facilities along with emission rates and stack parameters required for modeling.
- Missing stack parameters can be filled in by the applicant after consultation with GA EPD.



#### **STREET VIEW MAP**



#### **SATELLITE MAP**





#### **EXCEL FILE**

- Contains eight worksheets: (1) "Search Information", (2) "SM", (3) "TV short term", (4) "TV long term", (5) "Exempt", (6) "Increment SM", (7) "Increment TV", and (8) "Q over d".
- "Q over d" (i.e., Q/d) information is provided, where Q=emissions (tons/year) and d=distance (km).
- Q/d < 10 can be used by the applicant to exclude some offsite sources from the cumulative analysis.
- All data sources and calculations are documented in a Notebook.



#### **EXAMPLE EXCEL FILE**

|    | В                            | С                            | D    | E                                           | F        | G     | н                                           | I                      | J          | K           | L      | M       | N                   | 0            | P       | Q             | B       | S          | Т    | U            | V        | V            |   |
|----|------------------------------|------------------------------|------|---------------------------------------------|----------|-------|---------------------------------------------|------------------------|------------|-------------|--------|---------|---------------------|--------------|---------|---------------|---------|------------|------|--------------|----------|--------------|---|
| 1  |                              |                              |      |                                             |          |       |                                             |                        |            |             | UTME   | UTMIN   | Elev                | NOX          | CO      | SO2           | PM10    | PM2.5      | н    | Т            | ٧        | D            |   |
| 2  | Name                         | Facility Description         | Туре | Address                                     | County   | Stack | Stack Description                           | Lat                    | Long       | Zone        | e (m)  | (m)     | (ft)                | (lb/hr)      | (lb/hr) | (lb/hr)       | (lb/hr) | (lb/hr)    | (ft) | (F)          | (ft/s)   | (R)          |   |
| 3  | Chemical Products Corp       | Inorganic Chemical Manuf-    | T۷   | 102 Old Mill Road, Cartersville, Georgia 30 | Bartow   | 1     | Cleaver Brooks Boiler                       | 34.150470              | -84.785280 | 16          | 704182 | 3781056 | 737                 | 3.28         | 2.76    | 5.40          | 0.38    | 0.38       | 55.0 | 400          | 25.0     | 3.00         |   |
| 4  |                              |                              |      |                                             |          | 2     | ABCO Boiler                                 | 34.150470              | -84.785280 | 16          | 704182 | 3781056 | 737                 | 1.65         | 1.38    | 2.71          | 0.19    | 0.19       | 55.0 | 400          | 25.0     | 3.00         |   |
| 5  |                              |                              |      |                                             |          | 3     | Nebraska Boiler                             | 34.150440              | -84.785300 | 16          | 704180 | 3781053 | 737                 | 6.39         | 5.37    | 8.10          | 0.73    | 0.73       | 50.0 | 450          | 55.0     | 2.50         |   |
| 6  |                              |                              |      |                                             |          | 4     | West Kiln                                   | 34.150590              | -84.785430 | 16          | 704168 | 3781069 | 737                 | 4.86         | 12.4    | 25.9          | 0.71    | 0.71       | 195  | 400          | 54.0     | 4.00         |   |
| 7  |                              |                              |      |                                             |          | 5     | East Kiln                                   | 34.150590              | -84.785430 | 16          | 704168 | 3781069 | 737                 | 8.88         | 22.6    | 47.3          | 1.30    | 1.30       | 195  | 400          | 54.0     | 4.00         |   |
| 8  |                              |                              |      |                                             |          | 6     | Rotary Dryer                                | 34.150940              | -84.786130 | 16          | 704103 | 3781106 | 737                 | 1.84         | 0.72    | 4.68          | 10.4    | 10.4       | 48.0 | 300          | 13.0     | 2.00         |   |
| 9  |                              |                              |      |                                             |          | 7     | South Spray Dryer                           | 34.150760              | -84.786270 | <b>1</b> 6  | 704090 | 3781086 | 737                 | 1.22         | 0.48    | 3.12          | 9.49    | 9.49       | 48.0 | 300          | 35.0     | 1.40         |   |
| 10 |                              |                              |      |                                             |          | 8     | Barium Chloride Druer                       | 34.150830              | -84,786350 | 16          | 704083 | 3781094 | 737                 | 0.93         | 0.37    | 2.41          | 8.56    | 8.56       | 30.0 | 250          | 12.0     | 1.70         |   |
| 11 |                              |                              |      |                                             |          | 9     | South Calciner                              | 34.150790              | -84,786160 | 16          | 704100 | 3781090 | 737                 | 4.98         | 1.96    | 12.7          | 12.8    | 12.8       | 45.0 | 400          | 50.0     | 2.30         |   |
| 12 |                              |                              |      |                                             |          | 10    | North Kiln                                  | 34.151670              | -84,786030 | 16          | 704110 | 3781188 | 737                 | 8.88         | 22.6    | 27.1          | 2.26    | 2.26       | 190  | 400          | 20.0     | 5.00         |   |
| 13 |                              |                              |      |                                             |          | 11    | Barium Metaborat Druer                      | 34 150530              | -84 787580 | 16          | 703970 | 3781058 | 737                 | 103          | 0.41    | 2.68          | 9.50    | 9.50       | 25.0 | 250          | 64.0     | 100          |   |
| 14 |                              |                              |      |                                             |          | 12    | Claux Plant                                 | 34 151670              | 84 786030  | 16          | 704110 | 3781188 | 737                 | 0 49         | 0.12    | 317           | 0.08    | 0.08       | 190  | 400          | 20.0     | 5.00         |   |
| 15 | Georgia Power - Plant Br     | Power Generation             | TV   | 317 Covered Bridge Boad, Cartersville, Ba   | Bartow   | 1     | Steam Generator Unit 1                      | 34 125110              | -84 920368 | 16          | 691298 | 3778208 | 727                 | 844          | 179     | 1902          | 249     | 199        | 675  | 125          | 67.2     | 43.8         |   |
| 16 | Georgian ower-in lank be     | r ower Generation            | 1 4  | on Covered Bridge Fload, Cartersville, Ba   | Dartow   | 2     | Steam Generator Unit 2                      | 24 125930              | -04.020000 | 16          | 691299 | 2779209 | 727                 | 792          | 169     | 1795          | 270     | 197        | 675  | 125          | 67.2     | 42.9         |   |
| 17 |                              |                              |      |                                             |          | 2     | Steam Generator Unit 2                      | 24 125576              | ×04.922220 | 10          | C01200 | 777000E | 727                 | T02          | 201     | 2140          | 204     | 165        | 675  | 125          | CA 7     | 40.0         |   |
| 10 |                              |                              |      |                                             |          | 3     | Steam Generator Unit 5                      | 34.120076              | -04.323206 | 10          | 001002 | 0770000 | 727                 | 343          | 201     | 2140          | 210     | 160<br>Mon | 070  | 120<br>More  | 04.7     | 40.1         |   |
| 10 |                              |                              |      |                                             |          | 4     | Steam Generator Unit 4                      | 34.125830              | -84.321330 | 10          | 631332 | 3778085 | 727                 | 340          | 200     | 2123          | 275     | 164        | 675  | 120          | 69.7     | 98.1         |   |
| 19 | <b>B</b> 1 1                 |                              |      |                                             | ~ "      | 5     | Startup Boller 3                            | 34.120006              | -84.919167 | 16          | 691893 | 3778033 | 121                 | 4.70         | 1.74    | 0.07          | 1.42    | 1.42       | 60.0 | 332          | 60.0     | 7.00         |   |
| 20 | Printpack Inc                | Commercial printing          | TV   | 297 Andrew Way, Villa Rica, Georgia 30180   | Carroll  | 1     | Combustion Sources                          | 33.742463              | -84.945764 | 16          | 690291 | 3735497 | 1089                | 6.38         | 4.83    | 0.04          | 0.46    | 0.46       |      |              |          |              |   |
| 21 | Atlanta Gas Light Compa      | Natural Gas Liquification    | TΥ   | 12860 East Cherokee Drive, Ball Ground, (   | Cherokee | 1     | Compressor Turbine                          | 34.279550              | -84.366610 | 16          | 742420 | 3796292 | 1154                | 21.0         | 5.18    | 0.22          | 0.42    | 0.42       | 36.0 | 918          | 25.1     | 5.00         |   |
| 22 |                              |                              |      |                                             |          | 2     | Boil-off Compressor No.1                    | 34.279680              | -84.366690 | 16          | 742412 | 3796306 | 1154                | 2.49         | 2.77    | 0.00          | 0.09    | 0.09       | 40.0 | 1200         | 35.2     | 0.70         |   |
| 23 |                              |                              |      |                                             |          | 3     | Boil-off Compressor No. 2                   | 34.279780              | -84.366660 | 16          | 742415 | 3796317 | 1154                | 2.49         | 2.77    | 0.00          | 0.09    | 0.09       | 40.0 | 1200         | 35.2     | 0.70         |   |
| 24 |                              |                              |      |                                             |          | 4     | Generator Engine No. 1                      | 34.279990              | -84.366820 | 16          | 742399 | 3796340 | 1154                | 2.11         | 2.11    | 0.00          | 0.08    | 0.08       | 18.0 | 1200         | 35.2     | 0.70         |   |
| 25 |                              |                              |      |                                             |          | 5     | Generator Engine No. 2                      | 34.280020              | -84.366760 | 16          | 742405 | 3796343 | 1154                | 2.11         | 2.11    | 0.00          | 0.08    | 0.08       | 18.0 | 1200         | 35.2     | 0.70         |   |
| 26 |                              |                              |      |                                             |          | 6     | Generator Engine No. 3                      | 34.279870              | 84.366380  | 16          | 742440 | 3796328 | 1154                | 2.11         | 2.11    | 0.00          | 0.08    | 0.08       | 18.0 | 1200         | 35.2     | 0.70         |   |
| 27 |                              |                              |      |                                             |          | 7     | Generator Engine No. 4                      | 34.279920              | -84.366390 | 16          | 742439 | 3796333 | 1154                | 2.11         | 2.11    | 0.00          | 0.08    | 0.08       | 18.0 | 1200         | 35.2     | 0.70         |   |
| 28 |                              |                              |      |                                             |          | 8     | Generator Engine No. 5                      | 34,280030              | -84,366750 | <b>*</b> 16 | 742406 | 3796345 | 1154                | 2.35         | 9.41    | 0.00          | 0.16    | 0.16       | 20.0 | 1060         | 79.4     | 1.20         |   |
| 29 |                              |                              |      |                                             |          | 9     | Best of Facility                            | 34,276647              | -84.373028 | 16          | 741837 | 3795954 | 1154                | 4.70         | 5.87    | 0.02          | 0.28    | 0.28       |      |              |          |              |   |
| 30 | Pine Bluff Landfill          | Municipal Solid Waste Lan    | TV   | 13809 East Cherokee Drive Ball Ground (     | Cherokee | 1     | Landfill - Elare 1                          | 34 270039              | -84 386266 | 16          | 740637 | 3795190 | 1123                | 7.01         | 15.0    | 139           | 169     | 169        | 36.4 | 1200         | 59.7     | 100          |   |
| 21 |                              |                              |      |                                             |          | 2     | Landfill - Elare 2                          | 34 270039              | .94 396266 | 16          | 740637 | 2795190 | 1123                | 6.80         | 37.1    | 129           | 169     | 169        | 42.2 | 1200         | 63.7     | 100          |   |
| 22 |                              |                              |      |                                             |          | 2     | Landfill - Flare 2                          | 24 270029              | -04.300200 | 10          | 740627 | 2795190 | 1122                | 5.00<br>5.00 | 20.9    | 1.00          | 1.00    | 1.00       | 42.0 | 1200         | 54.7     | 100          |   |
| 22 | Sharwin Williams Co          | Daint Manufacturing Escilit  | TV   | C795 Couth Main Street Morrow Coordin       | Clauton  | 1     | Deiler 1                                    | 22 509070              | 04.346200  | 10          | 746400 | 2717525 | 959                 | 0.00         | 1 00    | 10.1          | 0.47    | 0.47       | 72.0 | 200          | 20.0     | 2.00         |   |
| 33 | Sherwin-williams CO          | Faint Manuracturing Facilit  | 1.4  | 6755 South Main Screet, Monow, Georgia      | Clayton  | 2     | Deiler 1                                    | 53.563070              | -04.343200 | 10<br>Mic   | 740423 | 0717030 | 303<br><b>7</b> 050 | 2.00         | 1.00    | 10.1<br>Fr.07 | 0.47    | 0.47       | 30.0 | 600          | 30.0     | 2.00         |   |
| 34 |                              |                              |      |                                             |          | 2     | Boller 2                                    | 33.571499              | -84.342707 | 16          | 746600 | 3717811 | 959                 | 1.43         | 0.84    | 5.07          | 0.24    | 0.24       |      |              | <u> </u> |              |   |
| 35 |                              |                              |      |                                             |          | 3     | Rest of Facility                            | 33.571499              | -84.342707 | 16          | 746655 | 3717811 | 959                 | -            | -       | -             | 4.41    | 4.41       |      |              | <b>F</b> |              |   |
| 36 | Griffin Industries, Inc.     | Rendering Plant              | TΥ   | 4413 Tanner Church Road, Ellenwood, GA      | Clayton  | 1     | Johnson boiler                              | 33.633758              | -84.313813 | 16          | 749159 | 3724785 | 879                 | 5.42         | 3.39    | 1.25          | 0.53    | 0.41       | 35.8 | 430          | 72.2     | 2.30         |   |
| 37 |                              |                              |      |                                             |          | 2     | Cleaver Brooks boiler                       | 33.633854              | -84.313687 | 16          | 749170 | 3724796 | 879                 | 4.39         | 2.74    | 1.01          | 0.43    | 0.33       | 35.3 | 430          | 57.7     | 2.00         |   |
| 38 |                              |                              |      |                                             |          | 3     | Regenerative Thermal Oxidiz                 | e 33.633157            | -84.309564 | 16          | 749555 | 3724729 | 879                 | 0.40         | 0.34    | 8.47          | -       | -          | 40.0 | 230          | 44.8     | 2.70         |   |
| 39 |                              |                              |      |                                             |          | 4     | Rest of Facility                            | 33.633157              | -84.309564 | 16          | 749555 | 3724729 | 879                 | -            | -       | -             | 0.36    | 0.34       |      |              |          |              |   |
| 40 | Hartsfield-Jackson Intern    | Operation of an airport and  | T۷   | 6000 North Terminal Parkway, Atrium Suit    | Clayton  | 1     | Boiler 1                                    | 33.641700              | -84.447434 | 16          | 736740 | 3725352 | 1032                | 1.90         | 3.98    | 0.90          | 1.12    | 1.12       | 75.0 | 425          | 0.10     | 9.50         |   |
| 41 |                              |                              |      |                                             |          | 2     | Boiler 2                                    | 33.641700              | -84.447434 | 16          | 736740 | 3725352 | 1032                | 1.90         | 3.98    | 0.70          | 1.12    | 1.12       | 75.0 | 425          | 0.10     | 9.50         |   |
| 42 |                              |                              |      |                                             |          | 3     | Boiler 3                                    | 33.641700              | -84.447434 | 16          | 736740 | 3725352 | 1032                | 1.90         | 1.85    | 0.70          | 0.52    | 0.52       | 75.0 | 425          | 0.10     | 9.50         |   |
| 43 |                              |                              |      |                                             |          | 4     | Concourse E Boiler #1                       | 33.641700              | -84.447434 | 16          | 736740 | 3725352 | 1032                | 1.90         | 5.08    | 1.35          | 1.43    | 1.43       | 56.0 | 425          | 0.10     | 8.00         |   |
| 44 |                              |                              |      |                                             |          | 5     | Concourse E Boiler #2                       | 33.641700              | -84.447434 | 16          | 736740 | 3725352 | 1032                | 1.90         | 3.96    | 1.35          | 71.11   | 71.11      | 56.0 | 425          | 0.10     | 8.00         |   |
| 45 |                              |                              |      |                                             |          | 6     | Concourse E Boiler #3                       | 33.641700              | -84.447434 | 16          | 736740 | 3725352 | 1032                | 1.90         | 3.96    | 1.35          | 1.11    | 1.11       | 56.0 | 425          | 0.10     | 8.00         |   |
| 46 | Delta Air Lines Inc - Atlan  | Airport around support one   | TV   | Hartsfield-Jackson International Airport. A | Clauton  | 1     | Boiler 0723                                 | 33.643300              | -84.413900 | 16          | 739846 | 3725607 | 952                 | 120          | 0.71    | 213           | 0.20    | 0.20       | 30.5 | 402          | 24.6     | 3.00         |   |
| 47 | Denar III Elitebilito Tritan | Timport ground support opt   |      | nakonela odokoon internationan inport, i    | oragion  | 2     | Boiler 0724                                 | 33 643300              | .84 413900 | 16          | 739846 | 3725607 | 952                 | 120          | 0.71    | 213           | 0.20    | 0.20       | 30.5 | 402          | 24.6     | 3.00         |   |
| 40 |                              |                              |      |                                             |          | 2     | Boiler 4975                                 | 22 642200              | -04.410000 | 16          | 729946 | 2725607 | 952                 | 0.26         | 0.21    | 6.24          | 0.00    | 0.00       | 9 20 | 402          | 24.7     | 2.00         |   |
| 40 |                              |                              |      |                                             |          | 4     | Doner 4010                                  | 20.040000              | -04.413900 | 10          | 700040 | 0725007 | TOE 2               | 0.00         | 0.21    | 0.04          | 0.00    | 0.00       | 200  | 702<br>CO.O. | E0.0     | 5.00         |   |
| +3 | Atlanta Can Links Course     | Liquified Matural Case Dec 4 | TU   | 7700 History 95 Diverdala Carooli 2007      | Clauter  | +     | Mesc of Facility<br>Mescalizes Mester Mer 4 | 33.643300<br>22 E47004 | -04.413300 | 10          | 733046 | 3720607 | 077                 | 0.75         | 0.23    | 0.00          | 0.00    | 0.00       | 20.0 | 00.0         | 50.0     | 1.00         |   |
| 00 | Adanta Gas Light Compa       | Liquined Natural Gas Prodi   | 1.4  | 7750 migriway 85, Miverdale, Georgia 3027   | Clayton  | 1     | vaporizer Meater No. 1                      | 33.947684              | -04.411661 | 16          | 740319 | 3710007 | 8//                 | 0.20         | 0.07    | 0.00          | 0.01    | 0.01       |      |              | <u> </u> | +            |   |
| 01 |                              |                              |      |                                             |          | 2     | vaporizer Heater No. 2                      | 33.547684              | -84.411661 | 16          | 740319 | 3/1500/ | 977                 | 0.20         | 0.07    | 0.00          | 0.01    | 0.01       |      |              |          | +            |   |
| 52 |                              |                              |      |                                             |          | 3     | vaporizer Heater No. 3                      | 33.547684              | -84.411661 | 16          | 740319 | 3716007 | 9/7                 | 0.20         | 0.07    | 0.00          | 0.01    | 0.01       |      |              | <u> </u> | +            |   |
| 53 |                              |                              |      |                                             |          | 4     | Vaporizer Heater No. 4                      | 33.547684              | -84.411661 | 16          | 740319 | 3715007 | 977                 | 0.20         | 0.07    | 0.00          | 0.01    | 0.01       |      |              |          | $\downarrow$ |   |
| 54 |                              |                              |      |                                             |          | 5     | Vaporizer Heater No. 5                      | 33.547684              | -84.411661 | 16          | 740319 | 3715007 | 977                 | 0.20         | 0.07    | 0.00          | 0.01    | 0.01       |      |              | <u> </u> | +-+          | _ |
| 55 |                              |                              |      |                                             |          | 6     | Vaporizer Heater No. 6                      | 33.547684              | -84.411661 | 16          | 740319 | 3715007 | 977                 | 0.20         | 0.07    | 0.00          | 0.01    | 0.01       |      |              | 40       |              | _ |
|    |                              | arch Information             |      | 1 TV short terms TV I                       |          | -     | voment la secondad                          | Cha L                  | <u></u>    |             |        |         |                     |              |         |               |         |            |      |              | 42       |              | ļ |
|    | se se                        | archimormation               | 20   |                                             | ng term  | E     | xempt increment                             |                        |            | -           | ۹      |         |                     |              |         |               |         |            |      |              |          | <u> </u>     | 2 |



#### **EXAMPLE AERMOD FILE**

| **         | Georgia EPD PSD Database output                  |               |
|------------|--------------------------------------------------|---------------|
| **         | Pollutant: SO2                                   |               |
| **         | SHORT TERM EMISSION RATES                        |               |
| **         |                                                  |               |
| **         | Source Location **                               |               |
| **         |                                                  |               |
| **         | ID TYPE UTM EAST (m) UTM NORTH (m)               | Elevation (m) |
| **         | 01500002, Pandel Inc                             |               |
| <b>S</b> 0 | LOCATION ST1 POINT 703005.00 3780627.01          | 231           |
| **         | 01500007, New Riverside Ochre                    |               |
| <b>S</b> 0 | LOCATION ST2 POINT 705634.96 3782071.98          | 223           |
| **         | 01500018, Shaw Industries Group Inc Plant 13     |               |
| <b>SO</b>  | LOCATION ST3 POINT 700655.99 3781323.04          | 211           |
| **         | 01500021, CIMBAR PERFORMANCE MINERALS            |               |
| <b>SO</b>  | LOCATION ST4 POINT 705788.27 3781452.37          | 215           |
| **         | 01500047, Shaw Industries Group Inc Plant 11/12  |               |
| <b>S</b> 0 | LOCATION ST5 POINT 703983.02 3785183.05          | 244           |
| **         | 01500090, Matthews, C.W., Plt 06                 |               |
| <b>S</b> 0 | LOCATION ST6 POINT 710071.97 3787983.98          | 318           |
| **         | 01500124, Eco-Energy Distribution - Atlanta      |               |
| <b>S</b> 0 | LOCATION ST7 POINT 698493.11 3780136.37          | 206           |
| **         | 04500044, Flowers Baking                         |               |
| <b>S</b> 0 | LOCATION ST8 POINT 6090913.81 3735735.22         | 331           |
| **         | 04500055, Matthews C W Contracting Co Inc        |               |
| <b>S</b> 0 | LOCATION ST9 POINT 692031.41 3726913.85          | 339           |
| **         | 05700023, Pilgrims Pride Corporation             |               |
| <b>S</b> 0 | LOCATION ST10 POINT 730281.49 3786765.66         | 324           |
| **         | 06300012, International Paper Company            |               |
| <b>S</b> 0 | LOCATION ST11 POINT 741700.02 3722506.98         | 296           |
| **         | 06300021, Clayton Cnty Wb Casey                  |               |
| <b>S</b> 0 | LOCATION ST12 POINT 744193.99 3711561.95         | 269           |
| **         | 06300023, Clorox Products Manufacturing Co       |               |
| <b>S</b> 0 | LOCATION ST13 POINT 742399.80 3723911.09         | 306           |
| **         | 06300041. PCCR USA                               |               |
| <b>S</b> 0 | LOCATION ST14 POINT 742473.85 3722398.98         | 310           |
| **         | 06300048, Fort Gillem                            |               |
| <b>S</b> 0 | LOCATION ST15 POINT 745811.65 3723002.57         | 303           |
| **         | 06300090. TOTO USA. Inc.                         |               |
| <b>S</b> 0 | LOCATION ST16 POINT 745769.86 3716951.90         | 283           |
| **         | 06300102. Southern Regional Medical Center       |               |
| <b>S</b> 0 | LOCATION ST17 POINT 742267.04 3718409.13         | 264           |
| **         | 06300107. Baldwin Paving Co Inc Plt 2            |               |
| 50         | LOCATION ST18 POINT 740254.75 3722000.00         | 280           |
| **         | 06300109. Matthews C W Contracting Co Inc Plt 56 | 200           |
| 50         | LOCATION ST19 POINT 741574.96 3721022.95         | 267           |
| **         | 06300148 Delta Fight Products 110                | 207           |
| so         | LOCATION ST20 POINT 7/17/7 76 3726001 38         | 300           |
| **         | 06700001. Compass Chemical International LLC     | 200           |
| 50         | LOCATION ST21 POINT 731430 78 3744849 73         | 270           |
| **         | 06700009 Matthews ( W Contracting Co Inc Pl+ 03  | 2,0           |
| 50         | IOCATION ST22 POINT 723112 02 37660/1 01         | 319           |
| 50         | LUCATION 5122   0101 /25112.02 5700541.01        | 515           |

| **         | 15100025  | , Trans | scontir | nental Ga | as Pipe          | Line Com      | pany, LL | С     |
|------------|-----------|---------|---------|-----------|------------------|---------------|----------|-------|
| <b>SO</b>  | LOCATION  | ST409   | POINT   | 754915.   | .63              | 3718028       | .44      | 237   |
| <b>SO</b>  | LOCATION  | ST410   | POINT   | 754916.   | .79              | 3718019       | .59      | 237   |
| 50         | LOCATION  | ST411   | POINT   | 754918.   | .83              | 3718012       | .98      | 237   |
| 50         | LOCATION  | ST412   | POINT   | 754920.   | .86              | 3718006       | .38      | 237   |
| 50         | LOCATION  | ST413   | POINT   | 754922    | 95               | 3717997       | . 55     | 237   |
| 50         | LOCATION  | ST414   | POINT   | 754925    | .02              | 3717989       | .84      | 237   |
| 50         | LOCATTON  | ST415   | POTNT   | 754927    | 98               | 3717983       | .26      | 237   |
| 50         | LOCATION  | ST416   | POTNT   | 754930    | .04              | 3717975       | .54      | 237   |
| 50         | LOCATION  | ST417   | POTNT   | 754932    | 10               | 3717967       | 83       | 237   |
| 50         | LOCATION  | ST418   | POTNT   | 754944    | 53               | 3717954       | 84       | 237   |
| 50         | LOCATION  | ST/19   | POTNT   | 75/9/9    | 52               | 37179/1       | 65       | 237   |
| 50         | LOCATION  | 51412   | POTNT   | 75/052    | 54               | 3717032       | .05      | 237   |
| 50         | LOCATION  | ST/21   | POTNT   | 75/055    | 56               | 3717024       | 05       | 237   |
| 50         | LOCATION  | ST421   | POTNT   | 75/050    | 54               | 371701/       | 16       | 237   |
| 50         | LOCATION  | 51422   | DOTNT   | 75/061    | 64               | 3717005       | 34       | 227   |
| 50         | LOCATION  | 51425   | DOTNT   | 754901.   | 20               | 3717903       | - 54     | 227   |
| 50         | LOCATION  | 51424   | DOTNT   | 754910.   | 61               | 3710033       | ./4      | 227   |
| 50         | LOCATION  | 51425   | POINT   | 754901.   | .01              | 371002/       | . 97     | 227   |
| 50         | LOCATION  | 51420   | POINT   | 754962.   | .05              | 3710024       | .0/      | 227   |
| 50         | LUCATION  | 51427   | PUINI   | /54964.   | . 00<br>I Duruda | 5/10020       | . 20     | 257   |
|            | 24700033  | , Tegra | ant UIN | ers1+1eo/ | a Brands         | , Inc.        | 50       | 204   |
| 50         | LOCATION  | 51428   | POINT   | 773727.   | .93              | 3730028       | .50      | 284   |
| 50         | LOCATION  | 51429   | POINT   | 773728.   | . /6             | 3730031       | .92      | 284   |
| 50         | LOCATION  | 51430   | POINT   | //3/1/.   | .67              | 3730030       | .49      | 284   |
| 1.00       | Source Pa | aramete | ers **  |           |                  | <b>T</b> (11) |          |       |
|            | CRCRARAM  | 674     | Q       | > (g/s)   | H (m)            | T (K)         | V (m/s)  | D (m) |
| SO         | SRCPARAM  | 511     | 1.      | /26E-03   | 10.0             | 293           | 15.0     | 0.50  |
| 50         | SKCPARAM  | 512     | 1.      | 151E-03   | 10.0             | 293           | 15.0     | 0.50  |
| 50         | SKCPARAM  | 513     | 2.      | /33E+00   | 10.0             | 293           | 15.0     | 0.50  |
| 50         | SKCPARAM  | 514     | 1.      | 204E-01   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SKCPARAM  | 515     | 2.      | 802E+00   | 10.0             | 293           | 15.0     | 0.50  |
| 50         | SKCPARAM  | 516     | 1.      | 989E+00   | 10.0             | 293           | 15.0     | 0.50  |
| 50         | SKCPARAM  | 517     | 2.      | 301E-04   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | 518     | 2.      | 8//E-03   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | 519     | 2.      | 808E+00   | 10.0             | 293           | 15.0     | 0.50  |
| 50         | SRCPARAM  | 5110    | 1.      | 985E-01   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | ST11    | 1.      | 838E+00   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | ST12    | 7.      | 120E-01   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | ST13    | 7.      | 192E-01   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | ST14    | 2.      | 877E-04   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | ST15    | 4.      | 516E-02   | 10.0             | 293           | 15.0     | 0.50  |
| <b>S</b> 0 | SRCPARAM  | ST16    | 1.      | 381E-03   | 10.0             | 293           | 15.0     | 0.50  |
| S0         | SRCPARAM  | ST17    | 2.      | 848E+00   | 10.0             | 293           | 15.0     | 0.50  |
| <b>S</b> 0 | SRCPARAM  | ST18    | 2.      | 854E+00   | 10.0             | 293           | 15.0     | 0.50  |
| 50         | SRCPARAM  | ST19    | 2.      | 284E+00   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | ST20    | 8.      | 055E-03   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | ST21    | 5.      | 351E-01   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | ST22    | 1.      | 631E+00   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | ST23    | 7.      | 911E-01   | 10.0             | 293           | 15.0     | 0.50  |
| SO         | SRCPARAM  | ST24    | 2.      | 877E-04   | 10.0             | 293           | 15.0     | 0.50  |
| 50         | SRCPARAM  | ST25    | 1.      | 927E+00   | 10.0             | 293           | 15.0     | 0.50  |

14



# **COST & TIME**

- This project was initially requested by one of our industrial stakeholder groups.
- The cost and time savings associated with putting together PSD permit applications and the reduction in time for GA EPD to issue PSD permit applications were discussed with other industrial stakeholder groups.
- The initial cost of this project was \$326,000 with an additional annual fee of \$12,000/year for web hosting and system maintenance.
- GA EPD was able to pass the cost of this project along to our industries by increasing annual Title V \$/ton permit fees with a guarantee that this project would be funded.
- The project took approximately 18 months to complete.



#### **APPLICANT BENEFITS**

- Inventory data can now be collected by the applicant in seconds as opposed to days/weeks/months.
- There is a significant reduction in the time and cost (~33% reduction) for the applicant to develop a permit application that requires an offsite emissions inventory.
- The applicant has more certainty that their offsite emissions inventory will be approved since it was developed by the same Agency that will be reviewing and approving the permit application.
- The applicant can quickly and easily examine multiple airsheds and modeling scenarios to find the optimal location to build their project or determine which location is best for expansion.



### **STAFF BENEFITS**

- Previously, GA EPD permit modelers spent 25-50% of their time reviewing, validating, and correcting offsite emission inventories.
- Now they spend less than 1% of their time reviewing, validating, and correcting offsite emission inventories.
- This results in much quicker modeling reviews by the permit modelers and gives them additional time to analyze the modeling results in more detail.



# **ADDITIONAL BENEFITS**

- The offsite emissions inventory is continuously becoming more accurate with each interaction between GA EPD and the permit applicants.
- If the applicant finds an issue with an offsite emissions rate or stack parameters, they can work with GA EPD to update the incorrect values with the correct values in the PSD inventory tool.
- That way, when the next application in the same area pulls an emissions inventory, they will get the updated emissions inventory rather than having to identify and fix the same problem each time.



### SUSTAINABILITY

- This project did require an initial investment of time and money. However, the increased productivity outweighs this initial investment.
- The contractor initially populated the relational database with 389 Title V and 792 SM sources.
- Since then, the GA EPD SSPP has been routinely updating the database as new permits are issued.
- Currently, the web hosting and system maintenance are done by a contractor.
- GA EPD is in the process of evaluating options to bring this work in-house.



#### TRANSFERABILITY

- GA EPD used a contractor to develop the online PSD inventory tool and populated the database.
- The emissions inventory relational database and online interactive web application can be transferred from Georgia to other states free of charge.
- However, a big part of this project involved populating the database with state-specific emissions and stack parameters and documenting the data sources and emission calculations. This part of the project would need to be performed by each individual state with in-house resources or by a contractor.
- The Georgia emissions inventory database is routinely updated in-house as new permits are issued by the GA EPD SSPP. Other states could easily perform routine updates with existing staff and in-house resources.



#### UNIQUENESS

- GA EPD does not know of any other on-line interactive PSD emission inventory databases with mapping capabilities and the ability to directly produce AERMOD input files with a single mouse click.
- Applicants are amazed at how quickly they can develop offsite emission inventories for their projects. We have been told by our applicants with facilities in multiple states and consultants that work in multiple states that our process is significantly quicker, easier, and cheaper compared to other states.



#### WEBSITE

- The Georgia online PSD inventory tool is located at:
  - https://psd.gaepd.org/inventory/
  - Please feel free to try it out!!
- The "PSD Modeling Inventory Webpage User Guidance v. 1.03" is located at:

https://psd.gaepd.org/inventory/Home/Help



#### **CONTACT INFORMATION**

DEPT OF NATURAL

RESOURCES James Boylan, Ph.D. **Georgia Dept. of Natural Resources** 4244 International Parkway, Suite 120 **Atlanta, GA 30354** James.Boylan@dnr.ga.gov 404-363-7014