Promoting Energy Efficiency at Commercial and Industrial facilities in North Carolina

Adey Olatosi AAPCA 2015 Leadership Meeting 2015 Best Practices Award September 17, 2015

Outline

- Project Background / Objectives
- Planning / Marketing
- Project Implementation
- Results
- Conclusions / Challenges

Why Energy Efficiency?

- Decreases Facility Operating Costs
- Low Cost, Multi-pollutant Control for Combustion Sources
- Decreases Demand for Electricity Generation 1 unit of energy saved at the facility = 2 units of energy saved at power plant

Reduces demand at peaking units which have high emission rates

Reduces growth in demand over time

Objectives

- Target Audience
 - Plant operators and management
 - No restriction on facility size or type
- Program Goals
 - Educate companies about benefits and independency between energy consumption, costs and air emissions
 - Encourage companies to take <u>voluntary</u> actions to reduce air pollution

Planning / Marketing

Energy Efficiency Program

- Voluntary
- Energy assessments
- Outreach activities
 - Workshops
 - Webinars

Funding

- US EPA \$360,000
- US DOE*
- NC State Energy Office*
- Nominal fees charged

*In-kind contribution through our partners

Project Timeline

2011 - 2015

Marketing the Program

- Website http://ncair.org/planning/iee/
- Provided program information to target audiences
 - North Carolina Manufacturers Association and other industry meetings
 - Chamber of Commerce
 - Health and Safety and Environmental Meetings
 - Energy Efficiency Meetings and Classes
- Boiler MACT/GACT letters to facilities subject to rule
- Regional Office Staff recommended grant to specific companies
- Word of Mouth

DAQ Energy Assessment Concept & Team

- Provide reduced-cost energy assessments
- No facility size or type restrictions
- Primary focus reduce facility energy costs
- Identify cost-effective projects payback <2 years
- Quantify emission benefits

NC STATE UNIVERSITY

M mechanical & aerospace

- Professors and students perform work
- Program has operated for 20 years
- Assisting facilities of all sizes
- Average saving of \$55,000 per assessment

- Retired engineers perform the work
- Program has operated for 20 years
- Assist smaller facilities
- Estimated savings over program life 400,000 MWh 1.2 million MMBtu

Energy Assessment Process

Pre Assessment

Data Collection – bills, facility & equipment info

Site Visit Conduct survey with facility personnel Long-term data collection Follow-up with questions and initial findings

Written Reports

Recommendations for specific projects and O&M

Estimate of cost savings/payback

Information on rebate options

Air quality benefits

Follow-up Implementation Survey after a year

Pre-Assessment Form

ME AB	OUT DAQ + CONTACTS NEED HELP? EVENTS	NEWS * PERMITTING * COMPLIANCE * SEARCH	
nning >> Energy	Efficiency Opportunities		
	Energy Efficience	y Opportunities	
	Technical Assistan	ce to NC Businesses	
	on GHG Reporting and Volu	untary Reduction Strategies	
	EPA Greenhouse Gas Emissions Reporting Program	Voluntary Emissions Reduction Strategies	
	EPA Reporting Rule Website & Rule Fact Sheet & Resources by Subpart & Applicability Tool @	Opportunity to Reduce Plant Energy Costs and Air Emissions	
	Reporting Assistance Online Tutorial & Training Presentations @ Data Reporting System @ Rule Help Center @	How can you get an energy assessment?	
	Submit Request for Assistance on Reporting Requirements	Information on Energy Assessment Partners	
	EPA GHG Data	GHG Grant Case Study	
	EPA GHG Reporting Program Data 🚭 View NC facilities that reported under the rule.	See our preliminary analysis of the energy assessments conducted under this grant.	
	EPA 2011 National GHG Emissions Inventory 🚱 View estimated emissions from all sectors for the	Facility-wide Landfill Gas Wood Fired Boilers	
	encire oba.	Cumulative Findings: Energy Efficiency Fact Sheet	
	New Reporting Information Click @ to learn about the latest development on the Confidential Business Information.	Webinar Resources LED Lighting vs Fluorescents Click @ here for Resources for the February 2015	
	Amended Global Warming Potentials (GWPS) EPA published amendments to GWPS which will change the way total GHG emissions (as CO2e) are calculated. This change will impact both existing reporters of GHGs and will cause facilities previously exempt from	Cutting Convenience Store Costs Citcle & here for resources for the October 2014 workshops.	
	the Federal Register notice and rule summary: 78 FR	NEWS	
	C C C C C C C C C C C C C C C C C C C	2015 Award Recognition for energy efficient facilities and technical partners.	
		The NC DAQ Energy Efficiency Program funded by the EPA is one of the recipients of the 2014 ECOS State	

	- 2 · · · · · · 3 · · · · · ·	4 · · · · · · · · · · 5 · · · · · · · ·
DIVISION OF AIR QUAL		The chanical and serospace Reduction Partners
	Application for Energy	rgy Assessment *
Facility/Organization	on Name	
Type of facility in	idustrial, commercial, institu	utional
Facility Identificati	on Number (as shown on ail	r permit, if applicable)
SIC Code or Produ	ct(s) Made	
Facility Address	Street	
	City, State, Zip	
	County	
Contract Informatio	n Nomo	
Contact Informatio	Rhone	
	Filolie	
Size of Facility (squa	are feet of building space)	
No. of Employees a	t Facility	
Annual Energy Bill (include electricity, natural gas	, coal, fuel oil, other) \$
Annual Gross Plant	Sales \$	
In-house Energy En	gineer (full-time) ves / no	
Types of Euel (chec	k all that apply) coal natur	al dae fual oil propage wood
Types of Fuel (criec	<pre>coal</pre>	
Process and Equipri Boilers	nent of interest	Motors & Pumps
Engines		Steam Systems & Steam Traps
Compressed Ai	ir .	Process energy systems
Chillers and Co	oling Towers	Other
Areas of Concern of	Other Comments	
	Email form to: adey.ol	atosi@ncdenr.gov
*Note energy assessment	s required by the GACT rule can no lo	onger be scheduled. There is insufficient time remaining to
	rior to the compliance deadline. March 1	21 2014

N.C. Division of Air Quality • Mailing Address: 1641 Mail Service Center, Raleigh, NC 27699-1641

Robin Barrows

919-707-8445

Robin.Barrows@ncdenr.gov

Adey Olatosi 919-707-8706

Adey.Olatosi@ncdenr

Paula Hemmer

919-707-8708

Paula.Hemmer@ncdenr.go

ule

Example - Reports

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
EXECUTIVE SUMMARY
LANALYSIS OF FUEL USE

II. DESCRIPTION OF BOILERS

IV. INVENTORY OF MAJOR SYSTEMS

I.A EVALUATION OF STEAM PRODUCTION..... I.B OVERALL BOILER HOUSE STEAM EFFICIENCY.....

III. VISUAL INSPECTION OF BOILERS

V. PLANT OPERATING PROCEDURES

VII. MAINTENANCE PROCEDURES

CONSUMING ENERGY FROM BOILERS

VI. REVIEW OF BOILER STARTUP AND SHUTDOWN PROCEDURE

VIII. CURRENT BOILER CAPACITY FACTORS

IX. RECOMMENDATIONS FOR SYSTEM PERFORMANCE AND EFFICIENCY, AND MINIMIZING EMISSIONS BOILER EFFICIENCY TIPS

Table of Contents

I. Execu	tive Summary
II. Gener 2.1 Pla 2.2 Be 2.3 Fa 2.4 Pr 2.5 Ma	al Background
III. Energ 3.1 El 3.2 Na 3.3 To	y Management
IV. Assess 4.1 Cc 4.2 Ins 4.3 Cc 4.4 Re 4.5 Cc 4.6 Cc 4.7 Ins 4.8 Re 4.9 Re 4.10 Cc 4.11 Re 4.12 Re 4.13 Ins 4.14 Ins 4.15 Ins	sment Recommendations 14 ponvert Metal Halide and High Pressure Sodium Fixtures to T8 Fluorescent Fixtures15 15 stall High Efficiency Lamps and Electronic Ballasts 20 ponvert Strip and U-Lamp Fixtures to High Efficiency Lamps and Electronic Ballasts 20 ponvert Strip and U-Lamp Fixtures to High Efficiency Lamps and Electronic Ballasts 30 eplace Incandescent Lamps with 40-Watt Compact Fluorescent Lamps 38 ponvert 60-Watt Incandescent Lamps to 13.5-Watt LEDs 40 onvert from Incandescent to LED Exit Signs 42 stall Occupancy Sensor Controls 44 eppair Leaks in Compressed Air Lines 47 educe Compressor Discharge Pressure 52 ombine Router Vacuum System 54 ecover Conditioned Air from Dust Collection System 56 educe Excess Air on the Hurst wood-fired Boiler 60 crease the Amount of Condensate Returned to the Boiler 67 stall a Flowmeter in Makeup Water Line 69 sulate Condensate Return Tank 71
V. Additi 5.1 Ac 5.2 En 5.3 Ot	ional Items
6.1 Go	vernment Loans

Example - Targeted Assessment Summary

Table 1. A Summary of Energy Assessment Recommendations								
Recommendation	Resource Savings (- /yr)	Dollar Savings (\$/yr)	Implement. Cost, \$	Simple Payback (years)				
1. Recover Heat from Wastewater	11,079 MMBTU	\$52,036	\$15,000	0.25				
2. Improve Boiler Turndown	3,939 MMBTU	\$17,607	\$1,000 - \$50,000	0.1 - 3				
3. Reduce Stack Temperature in Boiler #1	2,351 MMBTU	\$11,043	\$0 - \$100,000	0 – 9	1 0			
4. Install Blowdown Heat Recovery	2,187 MMBTU 79,920 gal water	\$10,670	\$35,000	3.3	75 ł 2. R			
5. Insulate Hot Water Tank	674 MMBTU	\$3,164	\$1,617	0.5	3. R 4. Ir			
6. Insulate Steam and Condensate Return Lines	328 MMBTU	\$1,539	\$1,165	0.75	5. T Han			
7. Repair Steam Leaks	278 MMBTU	\$1,306	\$1,750	1.3	6. A heat			
Totals	20,836 MMBTU	\$97,365	\$55,532 - \$205,532	0.6 - 2	7. C Clea and			

The results in Table 1 represent out best estimates of potential savings and implementation costs. Plant managem should consult other sources and verify these estimates before taking action. Thank you for giving us the opportun to visit your facility and to submit these recommendations. We welcome your inquiries and further discussions.

Example - Facility-wide Assessment Summary

Table 2. Summary of Er	Table 2. Summary of Energy Assessment Recommendations								
Recommendation	Conserva	ation (-/yr)	Savings (\$/yr)	Implement Cost (\$)	Simple Payback (months)				
1. Replace 100 hp Compressor with Smaller 75 hp VFD Compressor	127,417	kWh	\$8,551	\$44,599	63				
2. Reduce Compressor Pressure	12,963	kWh	\$875	\$0	0				
3. Repair Leaks in Compressed Air Lines	7,745	kWh	\$161	\$100	8				
4. Install a Zero-Loss Compressed Air Condensate Drain Trap	11,629	kWh	\$782	\$300	5				
5. Turn Off 125 hp Wood Waste Collection Hammer Unless Needed	172,513	kWh	\$9,319	\$1,000	1				
6. Adjust Packing Schedules to Limit use of heat Shrink Oven	407	MMBTU	\$4,151	\$1,000	3				
7. Conduct Burner Tune-up on the 500 HP Cleaver-Brooks Boiler to Reduce Excess Air and Improve Boiler Efficiency	32	MMBTU	\$349	\$800	28				
8. Install Flowmeter in Makeup Water Line	42.35	MMBTU	\$462	\$600	16				
9. Increase Water Temperature in Condensate Return Tank to Reduce Chemical Use and Potential Oxygen Pitting	45.87	MMBTU	\$1,800	\$1,000	7				
10. Institute a Steam Trap Maintenance Program	171.5	MMBTU	\$1,119	\$1,000	11				
11. Install High Efficiency Lamps and Electronic Ballasts	79,804	kWh	\$6,058	\$16,659	33				
12. Convert Metal Halide Fixtures to Fluorescent	5,734	kWh	\$551	\$7,310	159				
13. Replace Spray Booth Lights with More Efficient Fluorescent Lighting	8,586	kWh	\$659	\$5,880	107				
14. Install Premium Efficiency Motors	17,584	kWh	\$1,335	\$7,920	71				
15. Replace Electric Strip Heating	33,228	kWh	\$1,795	\$10,400	70				
Total	477,203	kWh	\$37,967	\$98,568	31				
	699	MMB10							

Example - Environmental Report

	ri	Air Pollution Offsets (lb/yr)							
Recommendations	Savings	GHG				Criteria Pollutants			
	(kWh/yr)	CO2	CH₄	N ₂ O	Total GHG (as CO2e)	SO2	NOx		
 Convert Metal Halide and High Pressure Sodium Fixtures to T8 Fluorescent High Bay Fixtures 	195,746	202,767	4.2	3.4	203,909	415	133		
2. Install High Efficiency Lamps and Electronic Ballasts	578,871	599,635	12.5	10.1	603,029	1,227	394		
 Convert Strip and U-Lamp Fixtures to High Efficiency Lamps and Electronic Ballasts 	35,826	37,111	0.8	0.6	37,314	76	24		
4. Replace 200-Watt and 150-Watt Incandescent Lamps with 40-Watt Compact Fluorescent Lamps	24,219	25,088	0.5	0.4	25,223	51	16		
5. Convert 60-Watt Incandescent Lamps to 13.5-Watt LEDs	4,788	4,960	0.1	0.1	4,993	10	3		
6. Convert from Incandescent to LED Exit Signs	1,690	1,751	0.0	0.0	1,751	4	1		
7. Install Occupancy Sensor Controls	20,280	21,007	0.4	0.4	21,139	43	14		
8. Repair Leaks in Compressed Air Lines	41,217	42,695	0.9	0.7	42,931	87	28		
9. Reduce Compressor Discharge Pressure	37,437	38,780	0.8	0.7	39,014	79	25		
10. Combine Router Vacuum System	247,300	256,171	5.3	4.3	257,615	524	168		
11. Recover Conditioned Air from Dust Collection System	27,576	28,565	0.6	0.5	28,733	58	19		
Total	967,650 kWh	1,258,530	26.10	21.2	1,265,651	2,574	825		

Table 3b: Hazardous Air Pollution Emission Reductions from Wood Savings

Hazardous Air Pollutants*	Emissions Reduction (lb/yr)			
Total Metals	9.6			
Total Organics	98.2			
Total Acid & Gases	112.9			
Total HAPs	221.2			
*Appendix C presents a complete list of all HAP emiss				

Table 3a: GHG and Criteria Pollutant Emission Reductions from Wood Savings

				Air	Pollution F	educ	tions (II	b/yr)		
	Fuel Savings			GHG			Crit	eria Po	llutant	5
Recommendations	(MMBtu/yr)	CO2	CH₄	NzO	Total GHG (as CO2e)	SO2	NOx	со	voc	PM10
11. Recover Conditioned Air from Dust Collection System	3,729	0*	253	33	15,601	93	1,827	2,237	63	1,070
12.Reduce Excess Air on the Hurst Wood Fired Boiler	1,125	0*	82	11	5,078	30	595	729	21	349
13. Increase the Amount of Condensate Returned to the Boiler	222	0*	15	2	937	6	109	133	4	64
14. Install a Flowmeter in Make-up Water Line	250	0*	17	2	1,037	6	122	150	4	72
15.Insulate Condensate Return Tank	283	0*	19	3	1,178	7	139	170	5	81
Total	5,609	0*	386	51	23,831	143	2,792	3,419	97	1,635
* Actual biogenic emissions of CO2 are 1,114,670 lb/yr, but are not reported (See Section 3).										

Workshops and Webinars

Workshops

- Hands on wood-fired boiler workshop
- Improving Boiler Efficiency
- Cutting convenience store costs
- Compressed Air
- Steam Efficiency

Webinars

- LED Lighting vs Fluorescents
- High grade lighting opportunities

Results

Who received an Energy Assessment?

Typical Energy Efficiency Recommendations

<u>Potential</u> Energy Use and Emission Reductions Identified for 77 Energy Assessments

Total Reductions from ~500 Recommendations					
Electricity Savings	64,000 MWh/yr				
Fuel Savings*	420,000 MMBtu/yr				
	51,000 tons/yr				
CO ₂ e	16,000 tons/yr (biogenic)				
SO ₂	131 tons/yr				
NO _X	92 tons/yr				

* Not all recommendations result in fuel use decrease

<u>Average</u> Cost Savings & Capital Cost Per Recommendation

Top Recommendations	Average Cost Savings (\$/yr)	Average Capital Cost	Average Payback (Months)
Lighting	\$12,600	\$22,200	24
Steam	\$6,500	\$5,700	15
Boiler Tune-up	\$20,000	\$20,300	21
Compressor	\$5,400	\$3,500	8

Average total <u>facility</u> savings: \$100,000/yr Average total <u>facility</u> capital cost: \$20,000

<u>Actual</u> Energy Savings and Air Pollution Reductions

Type of Recommendation		Total		Energy R	eductions	Air Pollution Reductions		
		Percentage Implemented	Cost Savings (\$/yr)	Electricity Savings (kWh/yr)	Fuel Savings (MMBtu/yr)	NO _x (ton/yr)	CO2e (ton/y)	
lers	Boiler Tune-up	43%	\$249,000	0	127.000	22	11 500	
Boi	Steam	46%	\$332,000	0	137,000	22	11,500	
	Lighting	63%	\$768,000			11		
tv	Compressor	58%	\$142,000					
ectrici	Motors/HVAC	44%	\$405,000	22,700,000	5,000		13,000	
Ē	General- Electric	17%	\$160,000					
	Fuel Switching	10%	\$61,000					
Actual Savings Realized to Date			\$2,117,000	22,700,000	142,000	33	24,500	

Actual Savings and Reductions

	Potential Reductions 62 facilities	Implemented	Percent Reduction
Electricity Savings (MWh/yr)	46,000	22,500	49%
Fuel Savings (MMBtu/yr)	342,000	140,000	41%
CO ₂ e (tons/yr)	41,000	17,000	41%
NO _x (tons/yr)	80	32	40%

Average Implementation rate = 55%

Air Quality Impacts from Energy Assessments in NC

Parameter	NO _x (tons/year)	GHG (tons/year)
Statewide Emissions - EGUs & ICI Boilers*	63,950	58,234,000
Actual Reductions from 61 EAs	33	29,000
Percent Reduction	0.05%	0.04%
Possible Reduction in Emissions due to Statewide voluntary Implementation of Low Cost EE Measures	2.3%	1.9%

* 2011 NEI and 2012 Point Source Inventory

Conclusions

- Energy Assessments
 - Voluntary
 - Effective roadmap for the business community to implement EE
 - Significant savings in costs and air emissions can be realized
 - Direct interaction with energy professionals improves the outcome
- Facility Barriers to EE
 - Capital not available
 - Complexity of recommendation
 - Lack of management support, lack of time
 - Uncertainty in future of the business

Program Challenges

- Initial lack of participation from certain industries
- Facility shutdowns
- Implementation reporting

North Carolina Department of Environment and Natural Resources

N.C. Division of Air Quality

Acknowledgements

- U.S. EPA
- NCSU-MAE
 - Dr. Herb Eckerlin
 - Dr. Stephen Terry
 - <u>http://www.mae.ncsu.edu/energy/</u>
- Waste Reduction Partners
 - Terry Albrecht
 - Russell Jordan
 - <u>http://wastereductionpartners.org/</u>

Project Team

Sushma Masemore

sushma.masemore@ncdenr.gov

- Robin Barrows <u>robin.barrows@ncdenr.gov</u>
- Paula Hemmer

paula.hemmer@ncdenr.gov

Adey Olatosi

adey.Olatosi@ncdenr.gov

Thanks for the info . Again , It is very refreshing to meet with and work with such talented and helpful people. - Greenhouse facility

The tips you provided on energy reduction and information on workshops/webinars will be helpful. Our company is putting together an Energy Council and as a member I will ensure we look into these opportunities. Our energy consumption for facilities in North and South Carolina is substantial so we are always looking for ways to reduce it. We also have a company goal to reduce greenhouse gas emissions through energy reduction. Many of our facilities are working on or considering lighting projects to achieve their goals - Bearings Manufacturing Company

I have received the hard copy of the report. I appreciate Dr. Terry and his team inspecting our facility. This was very informative and very practical.