

Regulatory Impact Analyses: A State Perspective

Lindsey Jones, MS Sabine Lange, PhD Toxicology Division Texas Commission on Environmental Quality

April 28, 2016

- 15 toxicologists (not economists)
 - Specialties in toxicology, chemical risk assessment, public health, epidemiology
- Derive risk-based toxicity factors for
 - Remediation
 - Air quality assessments (air toxics)
 - Water quality assessments
 - Air permit applications
- Conduct, coordinate, and publish human health risk assessments
- Comment and testify on federal initiatives related to chemical risk assessment and public health

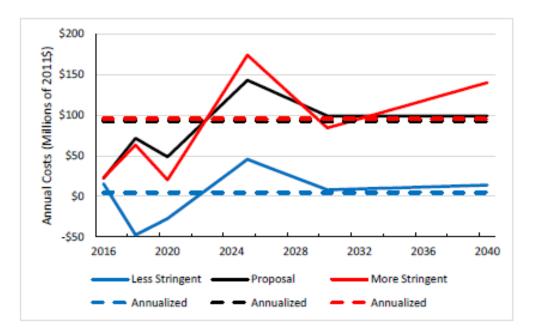
RIAs: What They Are

- Very important
- Required by Executive Order for all major proposed regulations
- Directed toward decision makers
- Used to help determine if the benefits of an action justify the costs (non-NAAQS rules)
 - Compares three regulatory options, including the proposed rule, to allow decision makers to determine the most cost-effective alternative (non-NAAQS rules)

- Cookie cutter
- Typically inclusive of macroeconomic or quantitative uncertainty analyses
- Anything more than informational for NAAQS rules
- Subject to peer or public comment

RIA Sections of Particular Note

- Executive Summary
- Baseline Analysis
- Control Strategies
- Costs
- Benefits
 - Quantitative and qualitative
 - Health and welfare


 Typically only based on technological costs to industry, though costs to society ("social costs") are sometimes included

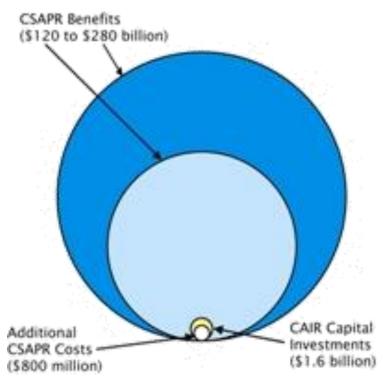
Policy	Cost Basis*	Annualized Cost*
Cross-State Air Pollution Rule Update	Uniform NOx costs of \$1300 per ton based on existing technology	\$93 M (2011\$) 2016-2040
Brick and Structural Clay Product NESHAP	Cost to install/retrofit control devices	\$28 M (2011\$)
Emission Standards for Oil and Natural Gas Sector	Engineering costs minus product recovery sales	\$320-420 M (2012\$) 2016-2025

*Costs provided are for the proposed rule, not the other two options provided in the RIA

 Typically use annualized costs with a 7% discount rate, which can be different than annual costs

RIA for the Proposed CSAPR Update for the 2008 Ozone NAAQS (2015)

Figure 5-2. Time Series of Annual Costs and Annualized Costs for the Proposal and More and Less Stringent Alternatives


- Can sometimes include estimates of technology that does not yet exist ("unidentified" or "unknown" controls)
- Does not include costs to other organizations
 - A moderate ozone nonattainment area in Central Texas is estimated to cost
 - State \$1 M for modeling, emission reduction projects, numerous staff hours for SIP revision development and public meetings
 - Local area \$22.3 41.6 B in loss of manufacturing, delayed infrastructure improvements, and federal funding for construction projects

CAPCOG. 2015. The potential costs of an ozone nonattainment designation to Central Texas. Available at: http://www.capcog.org/documents/airquality/reports/2015/Potential_Costs_of_a_Nonattainment_Designation_09-17-15.pdf

State Perspective on Costs

- Costs do not directly compare to benefits
 - Capital investment in NOx control device -\$1300/ton
 - Cost to purchase, install, and operate control technology, changes in fuel costs, changes in generation mix
 - Cost of a premature death \$9.9 million (2011\$)
 - Value of a statistical life (VSL) (marginal reductions in probability across a population)
 RIA - State Perspective • TCEQ Toxicology Division • April 28, 2016 • Page 9

https://www3.epa.gov/crossstaterule/

Benefits: What Pollutant?

- Both quantitative and qualitative benefits
 - When possible, monetized based on willingness to pay or accept, value of a statistical life (VSL), or cost of a health endpoint (e.g., hospital admission)
- Benefits are not restricted to the pollutant being regulated in the rule (co-pollutants can be considered)
- Co-pollutants were raised in the MATS litigation, though the Supreme Court didn't rule on it

Use of PM_{2.5} in RIAs

Table 2. Summary of Degree of Reliance on PM_{2.5}-Related Co-Benefits in RIAs Since 1997 for Major Non-PM_{2.5} Rulemakings under the CAA

(RIAs with no quantified benefits at all are not in this table. Where ranges of benefit and/or cost estimates are provided, percentages are based on upper bound of both the benefits and cost estimates. Estimates using the 7% discount rates are used in all cases.)

Year	RIAs for Rules NOT Based on Legal Authority to Regulate Ambient PM _{2.6}	PM _{2.6} Co- Benefits Are >50% of Total	PM _{2.6} Co- Benefits Are Only Benefits Quantified
1997	Ozone NAAQS (.12 1hr=>.08 8hr)	×	
1997	Pulp&Paper NESHAP		
1998	NOx SIP Call & Section 126 Petitions		
1999	Regional Haze Rule	×	
1999	Final Section 126 Petition Rule	×	
2004	Stationary Reciprocating Internal Combustion Engine	×	
2004	Industrial Boilers & Process Heaters NESHAP	×	×
2005	Clean Air Mercury Rule	×	
2005	Clean Air Visibility Rule/BART Guidelines	×	
2006	Stationary Compression Ignition Internal Combustion		
2007	Control of HAP from mobile sources	×	×
2008	Ozone NAAQS (.08 8hr =>.075 8hr)	×	
2008	Lead (Pb) NAAQS	×	
2009	New Marine Compress'n-Ign Engines >30 L per	×	
2010	Reciprocating Internal Combustion Engines NESHAP	×	×
2010	EPA/NHTSA Joint Light-Duty GHG & CAFES		
2010	SO2 NAAQS (1-hr, 75 ppb)	×	> 99.9%
2010	Existing Stationary Compression Ignition Engines	×	×
2011	Industrial, Comm, and Institutional Boilers NESHAP	×	×
2011	Indus'l, Comm'l, and Institutional Boilers & Process	×	×
2011	Comm'l & Indus'l Solid Waste Incin. Units NSPS &	×	×
2011	Control of GHG from Medium & Heavy-Duty		^
2011		×	
2011	Utility Boiler MACT NESHAP (Final Rule's RIA)	×	> 99%
2011	Mercury Cell Chlor Alkali Plant Mercury Emissions	×	
2011	Sewage Sludge Incineration Units NSPS & Emission	×	×
2011	Ferroallovs Production NESHAP Amendments	×	×

2009 Change in Methodology

- EPA uses estimates of benefits from reducing PM_{2.5} in its RIAs for rulemakings under the Clean Air Act
- Trend towards using PM_{2.5} as primary source of benefits in most RIAs since 1997
 - Even when regulation is not intended to protect public health from exposures to ambient PM_{2.5}
 - This is called "cobenefits" because a PM_{2.5} reduction is expected from efforts to reduce other air pollutants

From Smith, 2012 testimony

- For the ozone rule, the EPA assumes that when NO_x decreases, so does $PM_{2.5}$ but only nitrate $PM_{2.5}$ would reliably decrease (that is the kind of PM that NO_x produces)
- But, not all types of PM_{2.5} have equal toxicity there is little evidence that nitrate PM_{2.5} is very toxic (healthy and asthmatic humans have been exposed to **mg**/m³ with little effect)
- This affects the validity of assuming that decreasing any kind of PM_{2.5} will result in 200-500 fewer deaths

Mercury & Air Toxics Standard

Control Technology	Benefits from HAPs (billions)	"Co-Benefits" from non- HAPs (billions of 2007\$)
Mercury	\$ 0.004-0.006	\$ 1-2
Acid Gasses	\$ 0	\$ 32-87
Non-Hg Metals	\$ 0	\$ 1-2
Total	≤\$ 0.006	\$ 33-90

- 73% of avoided premature deaths due to $PM_{2.5}$ were achieved below 7.5 $\mu g/m^3$ (well below the annual NAAQS of 12 $\mu g/m^3$)
- MATS is estimated to prevent 0.00209 IQ point loss per child (starting immediately)
- Each child will gain 0.0956 school days over their lifetime
- 0.00209 IQ points x 244,468 children = 511 IQ points per year
- Assuming a net monetary loss per decrease in one IQ point of between ~\$8,000 and ~\$12,000 (in terms of foregone future earnings)
- Benefit = \$4.2M to \$6.2M

Table adapted from testimony by Anne E. Smith 2/2010 to Subcommittee on Energy and Power

Benefits: Where will the Benefits Occur?

- Benefits can be attributed to the public at any distance from the source of emission reductions
- Benefits can be displayed aggregated across the country or disaggregated

Disaggregation of IWGs SCC values to U.S. and Non-U.S. (2007\$/tonne emitted in 2020)

	U.S. SCC	Non-U.S. SCC
5% DR	2	10
3% DR	7	35
2.5% DR	11	54

Source: NERA IAM runs replicating IWG's 2020 SCC values for FUND and PAGE, reporting their regional SCC values. Exclusion of DICE alters resulting avg. global SCC estimates by only ~\$1/tonne

Benefits: When will the Benefits Occur?

- EPA can choose any future scenario they deem appropriate
 - 4 years (Federal Transport Rule)
 - Premature mortality, acute bronchitis, heart attacks, hospitalization for respiratory/cardiovascular disease, lost work days, restricted activity
 - 11 years (MATS)
 - IQ, premature mortality, acute bronchitis, heart attacks, hospitalization for respiratory/cardiovascular disease, lost work days, restricted activity

An Illustrative Example – Final Ozone RIA

The Ozone RIA

- In the NAAQS review EPA is not allowed to consider cost; executive orders dictate RIAs be conducted
- However, it is important to understand the basis of the numbers, because they are used by both detractors and supporters

Table ES-5.Total Annual Costs and Benefits^{a,b} for U.S., except California in 2025
(billions of 2011\$, 7% Discount Rate)^c

	Revised and Alternative Standard Levels		
	70 ррь	65 ppb	
Total Costs ^d	\$1.4	\$16	
Total Health Benefits	\$2.9 to \$5.9 ^{e, f}	\$15 to \$30 ^{e, f}	
Net Benefits	\$1.5 to \$4.5	-\$1.0 to \$14	

Table ES-9. Total Annual Costs and Benefits^a of the Identified + Unidentified Control Strategies Applied in California, Post-2025 (billions of 2011\$, 7% Discount Rate)^b

	Revised and Alterna	Revised and Alternative Standard Levels	
	70 ррь	65 ppb	
Total Costs ^c	\$0.80	\$1.5	
otal Health Benefits	\$1.2 to \$2.1 ^d	\$2.3 to \$4.2 ^d	
Net Benefits	\$0.4 to \$1.3	\$0.8 to \$2.7	
RIA – State Perspect	ive • ICEQ Toxicology Division • Apri	128,2016 • Page 1/	

Costs in the Ozone RIA

- Illustrative costs
- Industry costs
- Doesn't include the costs to States
 - \sim \$1 million for a moderate non-attainment area SIP
 - Texas has spent ~\$1.4 billion on the Texas Emissions Reduction Program (TERP) – paid for by Texas drivers
- Does not include the economic impact (e.g. changes in electricity prices)

- All other rules are in place (CPP, MATS), including attainment of the 2008 75 ppb ozone NAAQS
- Costs for unknown/unidentified controls all controls in the Control Strategy Tool with costs greater than \$19,000/ton NO_x
- All unknown/unidentified controls assumed to cost \$15,000/ton NOx and do not escalate
- Costs calculated incremental to a 2025 baseline for all States except California (2037) – after marginal (2020) and moderate non-attainment deadlines (2023)

Table ES-7. Summary of Total Control Costs (Identified + Unidentified Control Strategies) by Revised and Alternative Standard Levels for 2025 - U.S., except California (billions of 2011\$, 7% Discount Rate)^a

Revised and Alternative Standards Levels	Geographic Area	Total Control Costs (Identified and Unidentified)
	East	1.4
70 ррь —	West	<0.05
	Total	\$1.4
(5)	East	15
65 ррb —	West	<0.75
	Total	\$16

^a All values are rounded to two significant figures. Costs are annualized at a 7 percent discount rate to the extent possible. Costs associated with unidentified controls are based on an average cost-per-ton methodology (see Chapter 4, Section 4.3 for more discussion on the average-cost methodology).

Regions for Presentation of Costs

Figure 4-3.Regions Used to Present Emissions Reductions and Cost ResultsRIA - State Perspective• TCEQ Toxicology Division • April 28, 2016 • Page 21

- What assumptions go into the costs?
 - All other rules are in place, previous standard was met
 - Year of attainment, year of capital spending
- How does the EPA monetize the unknown/unidentified costs?
 - Are they assumed to increase with increasing pollutant abatement, or not?
- Do the costs include those to the state and to the taxpayer?
- What regions are being combined to generate cost estimates?

- Based on epidemiology studies
 - Administrator expressed less confidence in these studies in the final rule because of significant uncertainties
 - In the RIA, there is 100% confidence in the causal association between ozone and the health endpoints (several are only likely-causal in the ISA)
 - Assumes benefits to zero concentrations (well-below the health-protective standard level)
 - The National Academy of Sciences in 2002¹ identified concerns about uncertainty in the health benefits, including benefits being reported as absolute numbers of avoided deaths or adverse health outcomes

- Most of the monetary benefits are from a reduction in mortality – essentially because of the VSL calculation (\$10M per statistical life)
- Most number of people affected by the morbidity endpoints
- Morbidity and mortality are based on a few key studies
 - Mortality: Smith et al. 2009 & Zanobetti & Schwartz 2008
 - Asthma attacks in children: Mortimer et al. 2002 & Schildcrout et al. 2006

Mortality and Morbidity Estimates

Table 6-20.Estimated Number of Avoided Ozone-Related Health Impacts for the
Revised and Alternative Standard Levels (Incremental to the Baseline) for the
2025 Scenario (nationwide benefits of attaining the standards in the U.S. except
California) ^{a, b}

		Revised and Alterative Standard Levels	
		(95th percentile confidence intervals)	
	Health Effectb	70 ppb	65 ppb
Avoided Short-Ter	m Mortality		
	Smith et al. (2009) (all ages)	96 (47 to 140)	490 (240 to 740)
multi-city studies	Zanobetti and Schwartz (2008) (all ages)	160 (86 to 240)	820 (440 to 1,200)
Avoided Long-term	n Respiratory Mortality		
	Jerrett et al. (2009) (30-99yrs)	340	1,700
multi-city study Avoided Morbidity	copollutants model (PM _{2.5})	(110 to 560)	(580 to 2,800)
	Hospital admissions - respiratory	180	920
	$(age 65+)^d$	(-42 to 400)	(-220 to 2,000)
	Emergency department visits for	510	2,700
	asthma (all ages)	(47 to 1.600)	(250 to 8,300)
	Asthma exacerbation (age 6-18) ^d	220,000 (-67,000 to 440,000)	1,100,000 (-330,000 to 2,100,000)
	Minor restricted-activity days	450,000	2,200,000
	(age 18-65)	(190,000 to 720,000)	(920,000 to 3,500,000)
	School Loss Days (age 5-17)	160,000 (57,000 to 360,000)	790,000 (280,000 to 1,700,000)

Table 6-21.Total Monetized Ozone-Related Benefits for the Revised and Alternative
Annual Ozone Standards (Incremental to the Baseline) for the 2025 Scenario
(nationwide benefits of attaining the standards everywhere in the U.S. except
California) (millions of 2011\$) ^a

		Revised and Alterative Standard Levels (95th percentile confidence intervals)		
	Health Effectb	70 ppb	65 ppb	
Avoided Sho	ort-Term Mortality - Core Analysis			
	Smith et al. (2009) (all ages)	\$1,000	\$5,300	
multi-city	Simili et al. (2009) (all ages)	(\$99 to \$2,900)	(\$500 to \$15,000)	
studies	Zanobetti and Schwartz (2008) (all	1,700	8,700	
	ages)	(\$160 to \$4,800)	(\$800 to \$24,000)	

^a All benefits estimates are rounded to whole numbers with a maximum of two significant digits. The monetized value of the ozone-related morbidity benefits are included in the estimates shown in this table for each mortality study.

6 out of 95 cities showed a statistically significant effect of ozone on daily mortality, and those 6 did not have the highest design values

From Smith et al: "We caution, again, that any national summary, even a population-weighted average, will conceal the still-unexplained heterogeneities. Further, we believe that the heterogeneity and sensitivity of ozone effect estimates to a variety of covariates leaves open the issue of whether or not ozone is causally related to mortality."

OZONE-MORTALITY COEFFICIENTS AND 95% PIs 8-HOUR OZONE

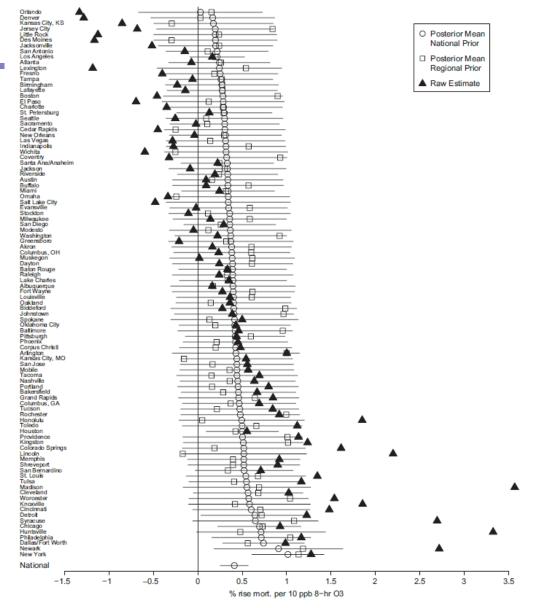


Figure 4. Ninety-five percent posterior intervals for the ozone-mortality coefficients, based on 8-h ozone, all-year data. The Bayesian posterior estimates under the "national prior" (circles) are shown alongside those for the "regional prior" (squares) and the raw maximum likelihood estimates (triangles).

 Table 6-23.
 Monetized PM2.5-Related Health Co-Benefits for the Revised and Alternative Annual Ozone Standards (Incremental to Baseline) for the 2025 Scenario (Nationwide Benefits of Attaining the Standards in the U.S. except California) (millions of 2011\$) ^{a,b,c}

	Revised and Alternative Standard L	
Monetized Benefits	70 ppb	65 ppb
3% Discount Rate		
Krewski et al. (2009) (adult mortality age 30+)	\$2,100	\$10,000
Lepeule et al. (2012) (adult mortality age 25+)	\$4,700	\$23,000
7% Discount Rate		
Krewski et al. (2009) (adult mortality age 30+)	\$1,900	\$9,300
Lepeule et al. (2012) (adult mortality age 25+)	\$4,200	\$21,000

• Assumes that $PM_{2.5}$ (and ozone) causes mortality even at very low levels (far below the $PM_{2.5}$ NAAQS that was set to protect public health with an adequate margin of safety)

- What % of the benefits are attributed to $PM_{2.5}$?
 - Because most of the country is in attainment for the $PM_{2.5}$ NAAQS, most of the benefit is being attributed to $PM_{2.5}$ below the standard
- What kind of uncertainties did the EPA express in the studies that were the basis of the health benefits?
- Are the results shown statistically significant?

- EPA's Science Advisory Board meeting on "Economy-wide Modeling of the Benefits and Costs of Environmental Regulation" (July 19-20, 2016)
- Professional societies and state partners (e.g. AAPCA)
- Trade organization and news articles
- Journals: *Risk Analysis, Regulatory Toxicology & Pharmacology*
- Economists, scientists, statisticians

Lindsey Jones, MS Senior Toxicologist, Toxicology Division lindsey.jones@tceq.texas.gov (512) 239-1784

Sabine Lange, PhD Section Manager, Toxicology Division sabine.lange@tceq.texas.gov (512) 239-3108