

Field Use of Air Monitoring Technologies

Matthew Schneider

US EPA National Enforcement Investigations Center

August 26, 2019

Geospatial Measurement of Air Pollution (GMAP)

GMAP Exterior Instruments

Meteorological Sensors:

- Motion-compensated anemometer
- 3-D sonic anemometer
- Turkey feather on a string

Position Sensors:

High precision GPS

Air Sampling:

Rotating, 4-port air inlet

Exterior instruments are mounted on an extendable boom

GMAP Interior Instruments

Chemical Sensors:

- Differential Ultra-Violet Absorption Spectrometer (DUVAS) – benzene, toluene, ethylbenzene, xylene isomers, sulfur dioxide, ammonia, others
- Picarro Cavity Ring-Down
 Spectrometer methane,
 hydrogen sulfide, carbon dioxide
- Photoionization Detector (PID) volatile organic compounds (VOCs)

Computer Hardware/Software:

- Rack mount PC control and custom data acquisition software
- Remote into PC with laptop from passenger seat

GMAP Real-Time Data

Concentrations shown in real time and recorded approx. every second

Mapping Data Example

Visualization of data allows for high accuracy leak detection.

GMAP Limitations

- Emissions must be close to the ground
- Must be some wind

Emission Rate Quantification Using GMAP

- Vehicle parked within the plume
- 20 minute data collection per measurement
- 3-dimensional wind vector and concentration
- No to very light precipitation
- Wind speed between approx. 2 mph and 25 mph
- Distance to source approx. 25 to 100 meters
- Unobstructed wind from potential source
- Typically requires site access
- Specific chemicals identified or VOCs
- Air canisters collected for quality checks and speciation of VOCs

Emission Rate Modeling

Example GMAP-REQ:

Distance = 90 m

Wind speed = 6.1 m/s

CH₄ bkg. conc.= 1.78 ppm

CH₄ plume conc. = 3.81 ppm

Emission estimate:

 $CH_4 = 1.86 \, g/s$

Good methane emission estimate based on Gaussian fit

Accuracy +/- 30% per run based on controlled release studies

Sensor Pods (aka: S-Pods)

- PID monitor
- Wind speed and direction
- Solar powered
- · Reading every second
- Cell phone technology being tested (daily data file remotely uploaded to a server)
- Can be programmed to collect air canister sample

Questions?

Request NEIC field support through your regional EPA office

My contact info:
Matthew Schneider 303-462-9292
Schneider.Matthew@epa.gov