Ozone NAAQS Implementation: Addressing Background Ozone

Mary Uhl, WESTAR

AAPCA spring business meeting

March 2019

Five Ozone Planning Needs under the Clean Air Act

- 1. Ozone NAAQS planning requires photochemical modeling for SIP attainment demonstrations for nonattainment areas.
- 2. Ozone transport SIPs photochemical source apportionment modeling can be used to quantify U.S. ozone transport between states and other jurisdictions.
- 3. Identification of Ozone exceptional events caused by stratospheric intrusion and wildfires requires observations and data analysis, supplemented with global/regional scale photochemical models and regression models.
- 4. Identification of international transport of Ozone for §179B demonstrations requires nested global and regional scale photochemical modeling to evaluate international transport of Ozone.
- 5. Identification of §182 Rural Transport Areas combination of data analysis and photochemical modeling.

In the West under CAA, whom to do which?

Alone or together?

- States/Locals
- Regional
- Federal

What is U.S. Background Ozone?

Any ozone formed from sources or processes other than U.S. manmade emissions of NOx, VOCs, CH4 and CO.

Sources may include:

- International transport of ozone precursors;
- Stratospheric intrusion of ozone;
- Lightning;
- Biogenic emissions;
- Wildfire

Along the west coast, seasonal mean concentration is 30-50 ppb (Jaffe et al., 2004)

O₃ Design Values at pairs of monitoring sites

Site location	Meters Above Sea Level	O ₃ Design Value
Bend, OR	1135	59
Mt. Bachelor, OR	2763	75
Carbon, WY	2015	55
Centennial, WY	3178	66
Camp Dodge, NH	451	57
Mt. Washington NH	1914	67

For nearby locations, higher elevation sites show much higher O_3 design values, demonstrating how background ozone is more important at elevation.

Why does background O₃ matter for NAAQS planning?

Controllable

sources

- Consider U.S. emissions trends
- (further) by States if nonattainment
- by EPA if allowed by CAA / litigation record / policy, i.e., CSAPR

Background / uncontrollable

sources

- rolling 3-year NAAQS compliance statistic
- > States have to react to variability and magnitude

Sources of surface O₃

Challenges to quantifying US Background Ozone for SIPs

- Complex, contributing sources like wildfire, international transport and stratospheric intrusion that are difficult for estimating emissions, modeling and monitoring
- Relatively small fractions of local anthropogenic emissions that are controllable
- Need for a chemical transport model initialized using boundary conditions derived from global models—benefits and limitations of various models for different uses

O3 trends at high elevation sites in Western U.S.

Flat O3 trend in Denver

Need to understand roles of:

- International and interstate transport
- Wildfires
- Stratospheric O3
- Population growth
- Oil and gas development
- Seasonal variation

Western Interconnect Fossil Fuel Power Plant Emissions

1996through 2014 data from EPA data for fossil fuel-fired electrical generating units in the 11-state Western Interconnect

^{*} Additional NOx reductions estimate - BART controls from Regional Haze baseline planning

^{**} Further NOx reductions estimate from applying maximum post-combustion controls to all remaining units

Strategies for Improving US

Background Ozone Estimates

More monitoring data to improve characterization of background

- More monitoring data to improve characterization of background O₃ and to evaluate the accuracy of model-based estimates of USB:
 - More measurements to improve characterization of vertical O₃ profiles
 - Network of O₃ LIDAR vertical profiles (NASA TOLNET pilot study)
 - o More ground based O₃ and precursor measurements in rural areas
 - Large-scale field experiments coordinated with NASA TEMPO project
- Perform comprehensive model evaluation studies using new monitoring data to assess contributions to background O_3 .
 - o Do global models accurately estimate BC inflow?
 - Do regional models accurately simulate natural sources of O₃ from wildfires and biogenic precursors?
 - \circ Do regional models accurately simulate vertical mixing of O_3 ?
 - Need improved projections of future emissions for uncontrollable sources as well as trends in global O3.
- Increase state/federal & planner/researcher collaborations to improve modeling and data analysis for O3 transport, wildfires, and stratospheric intrusion.

