

Alternative Fuel Vehicle Infrastructure

Rick Sapienza Clean Transportation Program Director NC Clean Energy Technology Center <u>resapienza@ncsu.edu</u> <u>www.Cleantransportation.org</u> 919-515-2788

"The North Carolina Clean Energy Technology Center advances a sustainable energy economy by educating, demonstrating and providing support for clean energy technologies, practices, and policies."

- Created in 1988
- Part of the College of Engineering at NC State University
- Clearinghouse for information, training, technical assistance, deployment, demonstration and applied research
- Example programs: solar, wind, industrial efficiency, CHP, renewable energy policy and *clean transportation*

Why Alternative Fuel Vehicles?

Today a business success measured by the triple bottom line:

- Willingness to do business—customers and suppliers
- Ability to recruit and retain top talent
- Energy security & fuel diversity
- Domestic economy
- Savings—reinvest or other areas
- Reduced emissions-environment/health
- Mandate or regulation

Significant Contributor to GHG Emissions

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2016

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

GHG Emissions by Fuel Type

Snapshot of US Public AFV Infrastructure

US Public Alterna	tive Fuel S	tations	
	Stations	Plugs 156,000 Stati	whic Ga
Propane	467	156,000	PUDinUS
CNG	921	1507 Stati	0113
LNG	75]
EV L1	1,086	2,200	
EV L2	17,948	45,177	
EV DCFC	2,517	9,013	
TOTAL EV	21,551	56,390	
Ethanol	3,301		
Biodiesel (<u>></u> B20)	197		

Source: https://afdc.energy.gov/stations/#/find/nearest

Snapshot of US AFV Infrastructure

Source: https://afdc.energy.gov/stations/#/find/nearest

Recent Trend AFV Stations: Public and Private

■ LNG ■ Biodiesel ■ CNG ■ E85 ■ LPG

Source: http://www.afdc.energy.gov/data/10332

Recent Trend AFV Stations: Public and Private Electric Plugs

Electric Plugs: ~70% Public

Source: http://www.afdc.energy.gov/data/10332

Top States for EVSE

■ Electric Stations ■ Electric Chaging Units
Source: <u>http://www.afdc.energy.gov/afdc/fuels/stations_counts.html</u>

Multi-State ZEV Task Force

Source: https://www.zevstates.us/

PEV Sales 2011-2016

All Electric Vehicle Sales 2011-2016

Source: http://www.anl.gov/energy-systems/project/light-duty-electric-drive-vehicles-monthly-sales-updates

>60 PEV options 2018/2019

INS	INSIDEEVs Plug-In Vehicle Comparisons - US													
Brand	Model	Base Price	Dest.	Tex	Opdated 201 Price After	Battery Size	EPA EV Range	Total Range	Top Speed	Peak Power EV		0.40 mph	Weight	Price
Aud	All fronteents a term official	(MSRP) 8 39,500	Charge	Credit 5 4.502	Tax Credit 3 35,973	(60%)	(m()	(mi) 400	(mph) 150	- 04W0	(Pip) 150	(144)	(Be) 3.610	800h
SB/W	A3 Sportback e-tron (2018) 330e iPerformance (2018)	\$ 45.000	\$ 975			7.6	15	350	1.60	- 10	150	59	3,900	\$6.0
ENTW	530e Performance (2018)	\$ 53,400	8 005	\$ 4,000	\$ 49,727	14	11	336	80	70	194	6.0	4,206	\$5.6
ENVIY	5.50 electromance (2010)	\$ 55,700	\$ 005	1 4 000	\$ \$2,027	9.4	14	300	- 67	70	104	5.8	4.305	\$5.9
CRAW	740e «Drive Performance (2018)	\$ 91,250	8 995	\$ 4 000	\$ \$7,677	9.2	14	340	155	80	255	51	4.409	89.9
EMAN		And in case of the local division of the		\$ 7,500		31.2	114	114	100	125	200	11	2.961	\$1.3
EBJW		44.500	8 005	\$ 7.500	8 41,795									
EMAN	0 REx (0.2 kWb) (2018) 0 x (0.2 kWb) (2018)		8 995	\$ 7.500	\$ 41,145	33.2	10/	180	93	125	M	80	3,234	\$1.4
INTIV			8 995	\$ 7,500			- 107		100	135	34	7.6		
	ON REY (33.2 ¥WV) (2018)	\$ 51,500			\$ 44,995	33.2	- 17	180					3.501	\$1.5
DM/W DM/W	ill Coupe (2019)	\$ 147.500	\$ 995	\$ 5,000	5 142,826	11.6		320	155	105	226	42		\$12.7
	all Roadster (2019)	\$ 163,300		\$ 5,000	\$ 158,625	11.6	17	320		105	278	44	3,671	\$14.0
EBAVA	X5 xDrive40e (2018)	\$ 63,750	\$	\$ 4,008	\$ 60,077	0.2	- 15	540	100	00	240	6.5	5,220	\$6.9
Caditac	C26 PHEV (2018)	\$ 75,095		\$ 7,500	\$ 68,590	18.4	- 21	430	150	149	335	5.2	4,400	\$4.0
Chevrolet	Bolt EV (2918)			\$ 7,500	\$ 29,995	60	238	238	90	150	10.04	6.5	3,500	- 50
Chevrillet	Volt (2018)	\$ 33,220		\$ 7,500	\$ 26,685	18.4	. 10	420	98	111	101	8.4	3,543	51,0
Chrysler	Pacifica Hybrid (2018)	\$ 39,995	\$1,395	\$ 7,503	\$ 33,890	- 14	33	570			-248	100	1000	\$2.5
Field	500e (2017) ·····		\$1,295	\$ 7,500	\$ 26,790	. 24	- 64	84	85	83		8.9	2.980	31.3
Ford	Focus Electric (2016)	\$ 29,120	\$ 875	\$ 7,500	\$ 22,495	33.5	-115	115		107	444		3,640	\$0
Ford	Fasion Energi (2016)	\$ 31,400		\$ 4.007	6 28,268	7.6	11	610	104	00	141-	8.6	3,964	54.5
Fort	Fusion Energi - Titlenium (2019)	\$ 34,595		\$ 4.585	\$ 30,885	9.0	24		100	88	341		3.986	\$3.6
Honda	Clarity Electric (2018) -	leased only.	A	\$ 7.500		25.5	10	- 69		£20			4 024	- 4144
Honda	Clarity Plug in Hybrid (2018)	\$ 33,400	8 001	\$ 7.500	8 25,795	17	42	340		135	103		4.052	\$1.9
Hyonda	KONIQ Electric (2014)	\$ 29.500	8 885	\$ 7.500	1 22,685	28	124	124	102	00	1967	99	3,164	\$1.0
		\$ 29,815	\$ 885	\$ 7 500			124		102					\$1.0
Hyunder	VONIQ Electric (2019)				\$ 23,200	28		124	100		104	.9.9	3,104	
Hyunda	IONIQ Plug-in Hybrid (2018)	\$ 24,950	\$ 885-	\$ 4.543	\$ 21,292	8.9	- 29	630		45				62.0
Hyunde	(2019) IndyH regulation (2019)	\$ 25.350		\$ 4543	\$ 21,692	8.9	29	630		45	104			\$2.6
Hyundar	Koha Electric (2019) Sonala PHEV (2018)	18 30,256	\$ 885 \$ 885		6 29,215	84.0	258	258	604 75	150	154	7.6	3.78F	\$3,2
Kerna	Revero (2018)	\$ 130.000	5.1.400	4.2.500	\$ 123,900	21.4	37	240	105	301	200	54	5.400	\$6.0
R10	Non PHEV (2018)	\$ 27.900				1.3	26	500		45	104		3,391	\$3.1
Kur	Optima PHEV (2018)	\$ 35,210				1.1	- 29	610	25	50	154	9.1	3,788	43.5
K.a.	Sou EV (2018)					30		101		\$1.4			4.321	.\$1.1
Land Rover	Range Rover P400e (2019)	\$ 95,150	8 005	8 1.000	\$ \$4,145	13.1	30	en	137	85	296	6.4	3.532	17.2
Land Rover	Range Rover Sport Pitote (2018)	\$ 78,500	\$ 990		5 79,295	13.1	-9-		157		200	0.3	5.648	35.9
Marcades		8 47 900	8 995	4 3.501	\$ 45,364	6.2		410	1.40	60	241	5.8	4.057	\$7.73
	C/Mde (2018)	49,990	5 995			17		350		- 00	300		4.057	
Mercedes	GLC 350e (2018)			\$ 4,410	\$ 44,825				_			6.2		\$5.7
Mercedes	G4,E 550e (2018)	\$ 66,700		\$ 4,400	\$ 63,235	1.1	- 8	400	-	85	329	5.3	5,456	\$7.50
MINE	Cooper S E Countryman ALL4 (2018)	\$ 36,900	\$ 850	\$ 4,001	\$ 33,749	7.6	- 12	270	79	46	136	6.7		\$4.0
Mitsubishi	Outlander PHEV 2018)	8 34,595		\$ 5,836	\$ 29,754	12.0	22	310	1.1.2.	120	- 117	1.1.1.1		42,0
Nissan	LEAF (40 x946) (2018)	\$ 29.990	\$ 005	\$ 7,500	\$ 23,375	40	154	15.5	90	110		7.9	3,433	57
Porsche	Cayenne S E-Hybrid (2018)-		\$ 1,010	\$ 5,336	\$ 75,614	10.8	14	490	151	20	333	5.4	5,181	\$7.3
Portche	Cayante E Rybrid (2019)		\$ 1,050	\$ 6,670	\$ 74,290	14.1			157	100	340	4.1		\$5.60
Porsche	Penamena 4 E-Hybrid (2018)	\$ 199,000	\$ 1,050	\$ 6.670		14.1	50	480	172	100	330	4.4	4,754	\$7.0
Portche	Panamera Turbo S E-Hybrid (2018)	\$ 184,400				14.1	54	450	192	100	350.	32	5.093	\$13.0
ameri	turteo ED Cabrio (2018)	\$ 28,100	\$ 750	\$ 7.500		17.6	57	57	#1	60		11.7		\$1.5
smart	fortwo ED Coope (2018)	\$ 23,900	\$ 750	\$ 7.500	\$ 17,150	17.6	58	58	81	00		11.4	2.363	\$1,3
Tet/a	Model 3 Standard		\$ 1,200	\$ 7.500	8 28,700		220	200	130		-	5.5	3,549	
Testa	Model 3 Long Range (2018)		\$1,200	\$ 7.500	1 42,700	- 80.5	310	310	140		-	5.1	3.814	30
Tesla	Model 3 LR AIND (2018)		\$ 1,200	\$ 7.500	\$ 47,200	80.5	310	390	145			45	1000	86
Table	Model 3 LR AWD Partomance (201 -	\$ 64,000	\$1,200	\$ 7 500	\$ \$7,700	-	310	310	155			35		- 67
Tella	Model \$ 750 (2018)	\$ 77.000	\$ 1,200	\$ 7,500	\$ 79,790	78	250	259	140	-		42	4.700	\$1.0
				\$ 7.500	\$ 90,200	100	205		155	-	-	41		
Testa		1 96,500	\$1,200					305		-			4,083	69
Tesla	Model & P1000x (2018)	\$ 135,000	\$ 1,200	1 7 500	\$ 128,700	100	215	395	155		-	25		11.2
Tesla	Model X 75D (2016)		\$1,200	\$ 7,500	\$ 76,700	76	238	230	130			4.9	5,307	\$1,10
Tasla	Model X 1000 (2018)		8.1,200	\$ 7,500	\$ \$3,200	100	295	295	155		- 100	4.7	5.421	49
Tesla	Model X P100DL (2018)	\$ 140,000		\$ 7,500	\$ 133,799	100	200	209	155		-	2.9	5,571	
Toyina	Price Prete (2018)	8 27,300	\$ 100	\$ 4,502	\$ 23,718	1.1	- 25	640		- 68			3,365	\$3,1
Volkswapen	e-Golf (2018)	\$ 30.495	8 895	\$ 7,500	\$ 23,890	36.8	125	125	93	900	-	9.0		Pir.
Volve	Sel0 Till Twin Engine (2019)	\$ 54,400	\$ 995	11112	14-17-0	122.71	1.5.5	3.0		64	313	2010		1.1.1
Volvo	590 T8 Twin Engine (2018)	\$ 63.650	\$ 995	\$ 5,002	\$ 55.643	10.4	21	455		64	313	4.7	4.579	\$6.1
Volvio	X050 T8 Twin Engine (2018)	6 52 900		\$ 5.002	1 48.893	10.4	17	370		64	313	40		\$5.0
Valvo	X000 T8 Twin Engine (2018)	\$ 64,950		\$ 5.002	\$ 60,845	10.4	19	380		64	313	5.9	5.050	\$4.2

***UPDATED SEPTEMBER 2018

Source: https://insideevs.com/compare-plug-ins/

Miles per Charging Time

Charging Types Summary							
	Charging Rates						
Level 1	4 to 5	miles per hour					
Level 2	11 to 60	miles per hour					
DC Fast							
25kW	22.5	miles per 15 minutes					
50kW	45	miles per 15 minutes					
120kW	108	miles per 15 minutes					
150kW	135	miles per 15 minutes					
350kW	315	miles per 15 minutes					
400kW	360	miles per 15 minutes					

Sources: https://www.fleetcarma.com/electric-vehicle-charging-guide/ https://evobsession.com/electric-car-charging-101-types-of-charging-apps-more/ https://insideevs.com/what-are-the-power-limits-of-available-dc-quick-charging-standards/ https://www.caranddriver.com/news/1800-miles-per-hour-ultrafast-charging-tech-moving-far-faster-than-anticipated https://plugincars.com/first-150-kw-fast-charging-station-opens-tesla%e2%80%99s-backyard-132652.html https://www.firstenergycorp.com/content/dam/customer/get-help/files/PEV/guide-to-ev-charging.pdf

DOT FHWA Alterative Fuel Corridors

Objectives:

- National network of alternative fueling and charging infrastructure along national highway system corridors
- Promote build out of national network
- Develop national signage and branding to help catalyze applicant and public interest
- Encourage multi-State and regional cooperation and collaboration

To date results:

- 58 Nominations
- Portions/segments of 84 Interstates & 43 US highways/state roads
- 44 states & D.C.
- Over 100,000 miles of the <u>National Highway System</u> (all fuels combined).

Source: https://www.fhwa.dot.gov/environment/alternative_fuel_corridors/

FHWA Alternative Fuel Corridors: EVSE

FHWA Alternative Fuel Corridors: EVSE

Miles

Summary of State EV Actions

Type of Action	# of Actions	% by Type	# of States
Financial Incentives	56	27%	11 + DC
Studies and Investigations	34	16%	23 + DC
Deployment	· 32	15%	16 + DC
Regulation	31	15%	12
Market Development	30	14%	7 + DC
Rate Design	28	13%	18 + DC
Total	211	100%	32 States + DC

Note: The "# of States/ Districts" total is not the sum of the rows because some states have multiple actions. Percentages are rounded and may not add up to 100%.

Common actions:

- Level 2 charging station deployment
- Electric vehicle rate tariffs
- Fast charging station deployment
- Rebate programs

Source: 50 States of EV Quarterly Report: Q3 2018, NC Clean Energy Technology Center

Summary of State EV Actions

Source: 50 States of EV Quarterly Report: Q3 2018, NC Clean Energy Technology Center

Number of Actions by Category

■2017 ■Q1 2018 ■Q2 2018 ■Q3 2018

Source: 50 States of EV Quarterly Report: Q3 2018, NC Clean Energy Technology Center

National Plug-In Infrastructure Analysis

- DOE EERE Vehicle Technology Office September 2017
- How much EVSE is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) & battery electric vehicles (BEVs)—plug-in vehicles (PEVs)
- Looked at 2-pieces--Community non-residential and national network
- Four areas of deployment focus:
 - Cities >50,000 (71% of population)
 - Towns 2,500 to 50,000 (10% of US population)
 - Rural areas (19% of US population)
 - Interstate highway corridors (28,530 miles)

Source: <u>https://www.nrel.gov/docs/fy17osti/69031.pdf</u>

National Plug-In Infrastructure Analysis: Study Area

National Plug-In Infrastructure Analysis: Community Non-Residential Estimates

- Level 2 plug count 63,000 to 1,100,000—central case 600,000
- DCFC 8,400 to 65,000—central case 25,000

National Plug-In Infrastructure Analysis: DCFC National Network

- Station count 137 to 713—central case 408
- Plug count 824 to 3,709—central case 2,472

National Plug-In Infrastructure Analysis: DCFC National Network Coverage Area

National Plug-In Infrastructure Analysis: DCFC Combined Coverage Area

How to Fund/Accomplish

- Private companies: ChargePoint, ABB, Clipper Creek, Electrify America, . . .
- VW Settlement Mitigation Funds 15% of \$3B
- CMAQ funding
- State funding and tax credits (currently 31 states)
- Public private partnerships—Northeast EV Network, the West Coast Electric Highway, Washington State EV Action Plan, . . .
- Cooperatives—Sourcewell, National Cooperative Buying Alliance, Fleets for the Future

General Comments

- PEVs are real and a viable transportation option
- EVSE network is critical for wide scale adoption
- "Perceived range anxiety" is an obstacle
- Rate and time of growth is uncertain
- Going to take a combination of awareness and motivation generation through education, policy, incentives and collaboration
- Moving target with rapid technology changes
- Largest obstacle to overcome is human nature to resist change
- Level 1 charging has its place

Some Interesting Statistics to Consider

- 73% of Tesla buyers supercharger network influenced purchase (Tesla)
- 95% to 98% of charging occurs at home or at work (DOE)
- 85%-95% of charging occurs at home (DOE)
- Person is 20 times more likely to purchase a plug-in vehicle, if they have access to charging at work (DOE)
- 70% of daily driving is <40 miles and 95% is <100 miles (DOE)
- US drivers use personal vehicle for trips >100 miles 6 days/year (DOE)
- 80% of consumer vehicles are owned by multi-vehicle households (DOE)
- 91% of PEV registrations where 71% of population lives—cities (DOE)

About the 50 States Report Series

Quarterly publications detailing state and utility activity related to: (1) distributed solar policy & rate design, (2) grid modernization and energy storage, and (3) electric vehicles https://nccleantech.ncsu.edu/our-work/policy/the-50-states-reports/

Complimentary copies available to state energy & air regulators, regulatory agency staff, & legislators – email <u>afproudl@ncsu.edu</u>

SAVE THE DATE: August 6-8, 2019 Durham Convention Center, Durham NC <u>SUSTAINABLEFLEETEXPO.COM</u>

https://lucidmotors.com/stories/lucid-air-hits-235-mph

North Carolina State University NC Clean Energy Technology Center Clean Transportation Program <u>www.cleantransportation.org</u> Rick Sapienza <u>resapienza@ncsu.edu</u> 919-515-2788

www.facebook.com/NCCleanTech

twitter.com/nccleantech

