

Association of Air Pollution Control Agencies 2019 Spring Meeting Southeastern VISTAS II Regional Haze Analysis Project Update

March 26, 2019 Department of Environmental Quality

Outline

- "Southeastern VISTAS II Regional Haze Analysis Project" Overview
- Update on Technical Work Supporting VISTAS II Participants on:
 - Baseline visibility conditions (2000 2004) and Uniform Rate of Progress (URP) glidepath (40 CFR 51.308(d)(2))
 - Reasonable Progress Goals (RPGs) for each Class I Federal Area (40 CFR 51.308(d)(1))
 - Long-Term Strategy (LTS) (40 CFR 51.308(d)(3))
 - Communications / Consultation Strategy (40 CFR 51.308(d), (f), &(i))
- What we need from EPA
- Summary / Conclusions

Project Overview

- Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization through Southeastern States Air Resource Managers, Inc. (SESARM)
- Participating Agencies:
 - 10 Southeastern (SE) states (AL, FL, GA, KY, MS, NC, SC, TN, VA, and WV)
 - The Eastern Band of Cherokee Indians (represents SE tribes)
 - Knox County, TN (represents Metro 4 local air pollution control agencies)

Project Overview

- Contractor team support:
 - Eastern Research Group, Inc. and Alpine Geophysics, LLC
 - Revisions to 2028 emissions inventory for EGU and non-EGU point sources
 - Area of Influence (AOI) screening analysis
 - Photochemical-grid air quality and source apportionment modeling

VISTAS II Project Management

18 VISTAS Class I Areas

Round 2 SIP Development Process – Key Elements

- 1. Calculate baseline visibility conditions (2000 2004) and URP from baseline to 2064
 - Most impaired days = 20% of monitored days in a calendar year with the highest amounts of <u>anthropogenic</u> visibility impairment
 - Clearest days = 20% of monitored days in a calendar year with the lowest deciview (dv) index values
- 2. Calculate RPGs for each Class I Federal Area
 - Project 2028 visibility conditions using air quality modeling
 - Adjust based on results of 4-factor analysis, if applicable
 - Compare the RPG for the 20% most impaired days to the URP line
 - No degradation in 20% clearest days

Round 2 SIP Development Process – Key Elements

- 3. Develop LTS for 2028 (40 CFR 51.308(d)(3))
 - AOI screening analysis
 - 4-Factor analysis of stationary sources controls:
 - Costs of compliance
 - Time necessary for compliance
 - Energy and non-air quality environmental impacts of compliance; and
 - Remaining useful life of any existing source subject to such requirements
- 4. Communications / Consultation (40 CFR 51.308(d), (f), and (i))

Element 1 Calculate Baseline Visibility Conditions and URP

IMPROVE Monitor Data Analysis

NORTH CAROLINA Department of Environmental Quality

IMPROVE Monitor Data Analysis

- Review monitoring data and develop charts for use in SIPs
- For each mandatory Class I Area:
 - For most impaired and clearest days:
 - Baseline visibility conditions
 - Natural visibility conditions
 - Current visibility conditions
 - Progress to date
 - Differences between current and natural visibility condition
 - Define URP

Visibility Impairment Trends (20% Most Impaired Days)

Great Smoky Mountains National Park

Swanquarter Wilderness Area

Reasonable Progress Goal for 2028 determined via air quality modeling and long-term strategy evaluation.

IMPROVE Monitor Data for 20% Most Impaired

Swanguarter Wilderness Area

Most Impaired Results - Annual Contributions to Light Extinction

Great Smoky Mountains National Park

Sea Salt **Extinction (Mn**¹) 100 CM Soil EC POM Amm, NO3 Amm, SO4 Rayleigh

Source: Interagency Monitoring of Protected Visual Environments (IMPROVE) website, http://vista.cira.colostate.edu/Improve/rhr-summary-data/

Department of Environmental Quality

Most Impaired Results - Annual Contributions to Light Extinction

Great Smoky Mountains National Park 20% Most Impaired vs. Worst Days, 2013 - 2017

"In" represents the number of daily observations that are in both the 20% worst and 20% most impaired data sets. "Out" represents the number of daily observations that are in 20% most impaired data set but not the 20% worst set.

11

8

7

Out

Department of Environmental Quality

Source: IMPROVE website, http://vista.cira.colostate.edu/Improve/rhr-summary-data/

11

12

Swanquarter Wilderness Area 20% Most Impaired vs. Worst Days, 2013 - 2017

"In" represents the number of daily observations that are in both the 20% worst and 20% most impaired data sets. "Out" represents the number of daily observations that are in 20% most impaired data set but not the 20% worst set.

14

14

12

Department of Environmental Quality

Out

10

Source: IMPROVE website, http://vista.cira.colostate.edu/Improve/rhr-summary-data/

16

Element 2

Calculate Reasonable Progress Goals (RPGs) for each Class I Federal Area

Air Quality and Source Apportionment Modeling

Air Quality Modeling with CAMx

- Provide initial RPGs for 2028 for each Class I Area
- Calculate Relative Response Factors (RRFs)
- Using EPA's 2011/2028 modeling platform (v6.3el) with CAMx v6.32 (2011 meteorology)
- Replaced CAMx v6.32 with CAMx v 6.40
- Adjusted 2028 point source emissions
- Reasons for using EPA's platform:
 - Timing will not meet SIP deadline with any other option
 - Budget significantly less for Round 2 vs. Round 1
 - Source sectors are reasonably well represented in EPA's platform (i.e., SIP quality)

2028 Point Source Emissions Adjustments

- Electricity Generating Units (EGUs)
 - EPA 2028 forecast included Clean Power Plan (CPP) controls
 - VISTAS States adjusted EPA 2028 EGU emissions up/down using:
 - ERTAC EGU forecast for 2028, v2.7 (2011 base year)
 - 2023 "en" emissions (2016 base year) or other state-specific data
 - Non-VISTAS States:
 - Replaced EPA 2028 emissions with ERTAC v2.7 forecast
 - For small EGUs in IPM but not ERTAC, used 2023 "en" emissions
- Non-EGUs
 - VISTAS States adjusted emissions up/down based on best available data

Modeling Domains 12-kilometer (km) grid

Element 3 Develop Long-Term Strategy (LTS) for 2028

Area of Influence (AOI) Screening Analysis and Source Apportionment Modeling

AOI Methodology

- Method for initial prioritization of facilities for 4-factor analysis
- Combines the following for 20% most impaired days:
 - 2011 base year and 2028 projection year emissions
 - 2011-2017 meteorology
 - 2011-2017 sulfate and nitrate concentrations from IMPROVE monitors
- Calculate facility's contribution to light extinction in each Class I Area
- Rank facilities from highest to lowest contribution
- Facilities with highest contribution to be evaluated further
- County-level contributions for onroad, nonroad, point, area, and prescribed fires also evaluated

AOI Metric (Q/d*EWRT)

- Emissions/Distance * Extinction Weighted Residence Time
- Emissions (tons/year) calculated for both 2011 and 2028
- Distance (km):
 - For facility, distance from facility to IMPROVE monitor
 - For sector, distance from county centroid to IMPROVE monitor
- RT (%) HYSPLIT back-trajectories re-projected to 12-km grid to calculate residence time for each grid cell
 - 12-km North American Mesoscale (NAM) meteorology data at 100; 500; 1,000; and 1,500 meter heights
- EW (Mm⁻¹) sulfate and nitrate extinction values from IMPROVE data

Example AOI Results by Sector

Example Class I Federal Area

Sector	SO2	NOx	Total
Non-Point	4.17%	3.56%	7.73%
Non-Road (Marine, Aircraft, and Railroads)	0.30%	3.51%	3.81%
Non-Road (Other)	0.16%	8.69%	8.85%
Onroad	0.23%	4.14%	4.37%
Point	66.91%	7.18%	74.09%
Point Prescribed Fires	0.81%	0.33%	1.14%
Total			100.0%

Example AOI Results by Facility (Sorted on Sulfate Fraction Only)

Facility	Distance (km)	2028 SO2 Emissions (Tons)	2028 NOx Emissions (Tons)	Sulfate Fraction	Cumulative Sulfate Fraction	Nitrate Fraction
1	53	4,846	496	37.59%	37.59%	0.57%
2	640	56,939	6,578	2.98%	40.57%	0.08%
3	69	687	1,796	2.25%	42.82%	1.01%
4	283	6,665	4,528	2.03%	44.86%	0.18%
5	651	41,596	8,123	1.76%	46.61%	0.06%
6	415	10,943	4,388	1.75%	48.36%	0.16%
7	88	608	201	1.30%	49.67%	0.05%
8	513	22,660	3,607	0.99%	50.65%	0.02%
9	626	16,817	5,497	0.83%	51.49%	0.07%
10	977	25,226	9,448	0.83%	52.32%	0.04%
11	87	288	722	0.74%	53.05%	0.24%
12	330	3,737	895	0.72%	53.78%	0.03%
13	569	10,083	11,831	0.66%	54.44%	0.08%
14	807	22,134	7,150	0.65%	55.08%	0.05%
15	602	10,984	4,878	0.62%	55.71%	0.04%
16	427	4,281	3,273	0.55%	56.26%	0.07%
17	620	11,866	5,216	0.54%	56.80%	0.05%
18	865	10,169	7,940	0.52%	57.32%	0.07%
19	1,345	41,740	9,685	0.51%	57.83%	0.03%
20	772	13,038	1,902	0.46%	58.29%	0.01%

Sulfate Fraction = EWRT.Qd_SO2_2028/(Total_NO3_2028 + Total_SO4_2028) Nitrate Fraction = EWRT.Qd_NO3_2028/(Total_NO3_2028 + Total_SO4_2028)

Example AOI Results by Facility (Sorted on Sulfate + Nitrate Fraction)

Facility	Distance (km)	2028 SO2 Emissions (Tons)	2028 NOx Emissions (Tons)	Sulfate Fraction	Nitrate Fraction	Sulfate + Nitrate Fraction	Cumulative Sulfate + Nitrate Fraction
1	53	4,846	496	37.59%	0.57%	38.24%	38.21%
2	640	56,939	6,578	2.25%	1.01%	3.27%	41.48%
3	69	687	1,796	2.98%	0.08%	3.06%	44.54%
4	283	6,665	4,528	2.03%	0.18%	2.22%	46.75%
5	651	41,596	8,123	1.75%	0.16%	1.91%	48.66%
6	415	10,943	4,388	1.76%	0.06%	1.82%	50.48%
7	88	608	201	1.30%	0.05%	1.36%	51.84%
8	513	22,660	3,607	0.99%	0.02%	1.00%	52.84%
9	626	16,817	5,497	0.74%	0.24%	0.98%	53.82%
10	977	25,226	9,448	0.83%	0.07%	0.91%	54.72%
11	87	288	722	0.83%	0.04%	0.87%	55.60%
12	330	3,737	895	0.72%	0.03%	0.76%	56.35%
13	569	10,083	11,831	0.66%	0.08%	0.74%	57.10%
14	807	22,134	7,150	0.65%	0.05%	0.70%	57.79%
15	602	10,984	4,878	0.62%	0.04%	0.67%	58.46%
16	427	4,281	3,273	0.55%	0.07%	0.62%	59.07%
17	620	11,866	5,216	0.52%	0.07%	0.59%	59.67%
18	865	10,169	7,940	0.54%	0.05%	0.59%	60.26%
19	1,345	41,740	9,685	0.51%	0.03%	0.54%	60.80%
20	772	13,038	1,902	0.42%	0.06%	0.49%	61.28%

Sulfate Fraction = EWRT.Qd_SO2_2028/(Total_NO3_2028 + Total_SO4_2028) Nitrate Fraction = EWRT.Qd_NO3_2028/(Total_NO3_2028 + Total_SO4_2028)

Source Apportionment Modeling with PSAT

- Quantify visibility impacts from individual point sources and/or geographic source sectors
- Used to evaluate AOI results and refine facility/sector contributions to visibility impairment
- Can be used to adjusted future year visibility projections to account for additional emission controls
 - No need to re-run photochemical model for final RPGs
- Contract allows for 250 tags; with option to increase number of tags

State Perspectives

- Selection of Emissions Sources for 4-Factor Analysis
 - AOI Screening Threshold Options
 - Facility and/or sector
 - Individual or cumulative impacts
 - PSAT results
- Degree of detail and difficulty
 - Where is a Class I Area on the URP?
 - Resources vs. results less effort for Class I Areas below URP?

Element 4 Communications / Consultation Strategy

- Shared responsibility
- VISTAS will provide forums for general stakeholder calls
 - Federal Land Managers (FLMs), U.S. Environmental Protection Agency (EPA), and non-VISTAS states
- Each state will work with its stakeholders on more specific considerations germane to its Class I Federal areas
- Each state responsible for FLM and EPA consultation during SIP development (after technical work ends)

Schedule for Completing Technical Work

- AOI Analysis:
 - Completed in February 2019
 - States reviewing results and briefing management
- 2028 Air Quality Modeling Results: April May 2019
- PSAT Modeling Results: April September 2019
- Final VISTAS Project Report: Fall 2019
- Final SIPs are due to EPA by July 31, 2021

What we need from EPA

- Completion of the final regional haze guidance document will be most helpful to ensure technical work is on target
- Establish a website to serve as a Clearinghouse for posting State SIPs and other information
 - States should have the opportunity to review and comment on other state's SIPs before a state submits its final SIP to EPA
- EPA expectations for use of its forthcoming 2028 regional haze modeling platform and results?

Summary / Conclusions

- Following similar approach to methods used for Round 1 SIPs
- Round 1 SIP (2000 2018)
 - All SE Class I Federal areas all are well below the URP for 2018 and 2028
- Round 2 SIP (2018 2028)
 - SO2 is primary cause of visibility impairment in SE's Class I Federal areas
 - Evaluate methods for controlling SO2 but also evaluate NOx
 - Impact of changing from the 20% worst to the 20% most impaired days
 - Lowers URP for NC Class I Federal areas from 1 to 2 deciviews
 - For 2013-2017, shifts most impaired days from primarily summer to summer/winter months

Look Rock (Great Smoky Mountains NP)

September 17, 2002, 12:30PM 6th most impaired day in 2002 Visibility: 31.9 DV or <u>11 miles</u>

Department of Environmental Quality

Source: National Park Service Webcam Archives - https://npgallery.nps.gov/AirWebCams/grpk

6th most impaired day in 2017

Visibility: 18.5 DV or <u>38 miles</u>

Look Rock Webcam

Webcam location

Source: National Park Service Webcam Archives - https://npgallery.nps.gov/AirWebCams/grpk

Department of Environmental Quality

Landmarks on a clear day

Acknowledgements

- Thank you to the following individuals that helped prepare this presentation
 - John Hornback, Executive Director, Metro 4/SESARM
 - James Boylan, PhD., Manager, Planning and Support Program, GA Department of Natural Resources, Environmental Protection Division, Air Protection Branch
 - Elliot Tardif and Nick Witcraft, Meteorologists, Attainment Planning Branch, Planning Section, North Carolina Division of Air Quality (NCDAQ)
- Contact Information:
 - Randy Strait, Chief, Planning Section, NCDAQ
 - Email: <u>randy.strait@ncdenr.gov</u>
 - Phone: 919-707-8721