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Vision for causal analytics

* Represent understanding of how the world works
by an explicit causal model.

— Learn, validate, and document models with data

* Use causal model to quantify how probabilities of
consequenceshange as decision variablesr
policiesare changed

* Given preferences, solve for best policy

— Choose policy variables to cause maximum net benefit
(or expected social utility)

— Perform sensitivity analyses, value-of-information
(VOI) analyses; optimize timing of interventions

— Evaluate results, adaptively learn and improve policies



Representing understanding via a
causal graph (DAG)

Example: Analyticalnfluence Diagram (ID) causal model
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Green rectangle: Choice (decision, policy, controlled) variables
Yellow ellipse: Chance (random, state, uncontrolled) variables
Pink hexagon: Value or utility variables

Others: Deterministic functions, conditional probability tables,
constants



Using the causal model to solve for the best
policy, via probabilistic simulation of outcomes

Use causal model to quantify how
probabilities of consequenceshange as
decision variablesr policiesare changed

400M T

Given preferences for consequences, solve
for best policy
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Simulation-based partial dependence plotDecision variable is varied over a range of
alternative (counterfactual) values. Other variables are drawn from distributions, for

each value of the decision variable.



Total Cost ($/yr)

Analyticds probabilistic simulation-based
uncertainty analysis
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If correct causal model is known, then it can be used to
support risk management policy decisions.



Causal analytics: How to learn and
validate causal models from data?
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What we want from causal analysis

* Predict/evaluateconsequences of policies

— How will (or how did) actionschange frequencies of
outcomesn a population?
* How does reducing exposure change risks?
* Manipulative causality
* Notassociational, attributive, counterfactual/ potential
outcomes, predictive, or mechanistic causality
— Most existing air pollution health effects studies and
regulatory benefits assessments do not address
predictive or manipulative causality (Schwartz et al.,
2016)

* Decades of associational, attributive, counterfactual/ potential
outcomes, and mechanistic studies



What we can get from data:
Predictive causality

* Do changes in exposures help to predicthanges in
health effects?

— Can be answered objectively from observational data
without assumptions using machine-learning algorithms
* Data from valid quasi-experimental designs
* Analytics via information-based causal discovery algorithms
* Automated, well-vetted and validated software in R and Python

— Predictivecausation is necessary (but not sufficient) for
what we want: manipulativecausation
e Useful screening tool, errs on the side of false positives

e Counterexample: Nicotine-stained fingers are a predictive cause
of lung cancer, but not a manipulative or mechanistic cause



bias

How to do it: Information-based causal discovery

algorithms dominate competitive evaluations
(Hill, 2016, http://jenniferhill7.wixsite.com/acic-2016/competition)
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Empirically, tree-based
model ensembles do best
in causal discovery
algorithm competitions

Propensity scoring
(potential outcome
models) do worst (about
20 times greater
prediction error and bias)
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Principles of most successful causal
effect estimation algorithms

o |nf0rmati0n prlnCipIe: Ca uses are CAT_tree (AllCause?5,PM2.5,tmin,tmax, MAXRH)
informative about (help to predict) their R O LR
effects

— So, exploit predictive analytics algorithms!

* Use DAGs, trees, Random Forests , etc. to find
informative variables

— Propagation principle: Changes in causes
help to predict and explain changes in
their effects :

— Information flows from causes to their
effects over time

* Use non-parametric effects estimates
— CART trees estimate conditional <82 vgo <49 5493

probabilities directly from data, no A\ ’_@/ Vo \@T
n=92 n=273 n=153 n=189 n=7 n =465

parametrlc mOdeI ¥=141.69¢y = 147 436 ¥=135.131y = 129.529y = 148.571y = 123.744

* Avoids errors from modeling biases,
specification errors, uncertain assumptions

— Allow nonlinearities and interactions

* Average over ensembles of hundreds of
non-parametric estimates/predictions

Tree generated using the '"partcy' package




Making it easy:
Causal Analytics Toolkit (CAT)

http://cox-associates.com/downloads/

~“  Home Insert Page Layout Formulas Data Review View Developer Team Causal Analytics Toolkit
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CAT applies R and Python analytlcs to
data in Excel

 Load data in Excel, click
Excel to Ro send itto R

— Los Angeles air basin

Home Insert Page Layout For

H izt Recode Columns ~ E\J

i Lags/Delta
Data

Rto
R Excel _‘.,—":'ISpItC lumn ~ Explorer

Data

2007 1 1 151 8.4 36 72 68.8

— 1461 days, 2007-2010 2007 1 2 158 17 4 36 75 489
(Lopiano et al., 2015, thanks 2% 1 ] 139 199 44 | 613
2007 1 4 164 64.6 37 68 87.9

to Stan Young for data) 2007 1 5 136 6.1 40 61 475

- PM25datafromcARB 2 1 L m g 2o
— Elderly mortality 2007 1 8 148 13.8 41 83 337
/“ »” 2007 1 9 188 14.6 41 84 375

( AllCause75 ) from CA 2007 1 10 169 196 41 78 63.2
Department of Health 2007 1 11 160 19.2 37 66 85.9

. . 2007 1 12 160 223 31 56 67.2

— Daily min and max temps & 2007 1 13 166 1.7 27 55 40.4

max relative humidity from
ORNL and EPA

* RIisk questionDoes PM2.5
exposure increase elderly
mortality risk? If so, how
much?
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Basic ideas of information-based

Causal Analytics .

e Use a (DAG) network to show which variables
provide direct information about each other (yean
— Arrows between variables show they are -
Informative abouteach other o
* Learn network structure directly from data
e Scoring algorithms, constraint algorithms, hybrids
— Carefully check conclusions
* In non-parametric analyses we trust! e
* Do power analyses using simulation Partal Dependencs on “month"

— Interpret neighbors in network as potential
direct causes$satisfying necessary condition)

* Use partial dependence plots learned from .
data (based on averaging over many trees) to \
quantify relation between inputs and \ -
dependent variables. s Ty




* Click B Bayesian Network _

_bnLearn (year,month,day,AllCause75,PM2.5,tmin,tmax,MAXRH)

B ian N k di .
to ge n e ra te DAG St r u Ct u re . Afr:vaeri)a\l/:/] beet:/\c:aoern tvlvaoq\rlzrrri]ables shows that they are informative about each other.

— Only variables connected (month)
to response variable by an
arrow are identified as
potential direct causes

— Multiple pathways
between two variables i

reveal potential direct and
indirect effects '

— Example:Direct and by
indirect paths between
tmax and AllCause75.

@iCauseT5

Network discovere d by bnlearn




By contrast, regression estimates total
associations, given an assumed model

Click on Automaticunder
Regression Models

CAT selects and runs
appropriate regression
models, reports results

— Quasi-Poisson regression
model shows significant
positive total ER
association between
PM2.5 and elderly
mortality (AllCause75)

— Significant negativetotal
association between
temperature and elderly
mortality

Dependent wvariable: Al1CauseT75S

puasi-Poisson regression model

Estimated Coefficients

Coefficients:
Estimate 5td. Error t
[Intercept) 4.9954390
PMZ2.5 0.000254
tmin —D 0.000626
-0.00177& 0.000447
MAXRH -0.000961 0.000235
year 0.000833 0.002489
month -0.00968¢6 0.000809 -11.9%8
Signif. codes: 0 "R&E%D 0 Q001 'A%

5% Confidence Imntervals

.5 % 87.5 %
{Intercept] -6.106729 13.475263

FMZ2.5 0.000247 0.001241
tmin -0.005048 -0.0025593
tmax -0.002651 -0.000901
HMAXEH -0.001421 -0.000501
year -0.004044 ©.005710
month -0.011271 -0.008102

™, Linear < Tree

™ Logistic

P Poisson &3 3D -

Regression Models

value Pri(>|t]|)

.74 =TT
2.93
-6.10 1.49e- s

-3.88 7T.3e-05 #%=%
-4.10 4.4e-05 *%*
0.33 0.7379

< 2e-1f #*E=

g.01 **' 0.05 *"." 0.1 " "1



Confirm or refute/refine BN structure
with additional non-parametric tests

CAT_compareCDFs{AllCause75,tmin)

Cumulative distribution function

° Conditioning on ve ry ;r;:;uiZTEEE;ar;li.ilie;f =D§v.vahesj TR e
different values of a direct CompareCDFs( AlCause7S ,tmin
cause should cause the - - J———
distribution of the response - f*f
variable to change =7 ,

* If the response variable does : °-
not change, then any E
association between them
may be due to indirect 1 4
pathways (e.g., confounding) .| . .2 =

100 120 140 160



Confirm or refute/refine BN structure
with additional non-parametric tests

CAT_compareCDFs(AllCause75,PM2.5)

. Conditioning on very T T s e T e
different values of a direct CompareCDFs( Allcause7s , PMI2.5)
cause should cause the = R
distribution of the response 7
variable to change " ;f

* |f the response variable does ¢ =1 £
not change, then any : . ;
association between them j
may be due to indirect = F
pathways (e.g., confounding) .| ..~ =

PMZ.5



Quantify direct causal relations

CAT_sensitivityPlot (AllCause75,tmin,tmax, MAXRH,PM2.5,year,month)
Partial dependence plot (PDF)

ProcedureTo quantify direct
(potentially causal) relations Partial Dependence on "tmin"”

after controlling for other
variables, use partial
dependence pldior response R

vs. (potential) cause C.

—  RandomfForest algorithm averages
multiple independent conditional
probability predictions of outcome Y
for each value of x

— Rationale: DAG structure shows that
the relation might be causal (X helps

135.0 1355
| L

1345

134.0
1

to predict Y). Partial dependence , TN T T T |
estimates size of potential effect. 30 40 50 60 70
—  Data-based simulation of conditional tmin

expected values generates curve



Validate quantified C-R relations in
hold-out sample

CAT_importance (tmax,MAXRH,year,month,AllCause75,PM2.5)
epe

CAT currently quantifies =™

HNo. of wariables tried at each split: 1

u n Ce rta i nty u Si ng Mean of sq'.lal;ed resid‘._:.alsi 53.311z28
bootstrap and cross-

validation approaches o )
for Random Forest
ensembles -
Averaging over many -

trees reduces MSE
(mean squared
prediction error)

0 100 200 300 400 500



Example applications: Boston & LA areas

CAT H!Mlimhrl’lﬂt [II'IEH'l-ili'IﬁjI ¥5,FhA2.5, Tmin, Trnas, MAXRH, year,montl CAT sensitivityPlot (mortality 75,PM2.5, Tmax, Tmin, Dewpoint,year, month,time)

rvh_.-; =
Fartial dependence plot (FDF)

rariabl BaETality Dependent wvariable: mortality7h

Fartial dependence plet (FDF)

Same plot wich diff
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P & PARE PMZE
PM2.5 has positive regression coefficient as predictor of AllCause75 in both data sets
PM2.5 is not a significant predictive causal predictor in either data set

C-R function learned from Boston does not apply in LA (and vice versa 20



Wrap-up on CAT

 Modern software makes it easy to apply
information-based causal analytics to
epidemiological data

* Entire analysis process can be automated

— Click on “Analyze” in CAT

— Minimizes roles of modeling choices, p-hacking,
confirmation bias, etc.

* Limited but useful outputs: Possible causal
relationships detected and quantified directly
from data

— Predictive causality, not necessarily manipulative



Recent advances in causal analytics for
risk analysis

* Clarifying what we want
— Manipulative causation

* |dentifying what we can get
— Predictive causation

* Understanding how to get it
— Information-based causal discovery algorithms

* Understanding how not to get it
— Associations, unverified assumptions, judgments

 Comparative evaluation and validation of
causal discovery algorithms



Literature has usually not addressed
predictive (or manipulative) causation

* How Not to assess predictive causation
— Statistical associations (almost all existing literature)
— Judgments, weight-of-evidence (IARC)
— Untested modeling assumptions

* Potential outcome/counterfactual models, instrumental
variables, regression discontinuity designs, etc.

* Intervention studies without control groups

 These methods are technically outdated (non-
competitive), but are still dominant in practice



What we want from causal analysis

Predict/Evaluateeffects of actions

ODbjectivity: Answers determined by data

— Answers should not depend on modeling choices

— Answers should not depend on judgments (as at IARC)
— Discover (don’t assume) how actions affect outcomes

— “Putting the science back into risk science”
Generalizabllity: Adjust answers across locations
Uncertainty characterization:How sure can we be
that policy changes cause desired effects?

— Not “How likely is association to be causal?”

— Value of information: What would reduce uncertainty?

Performance¥Validate how well methods work



What information-based causal
analytics gives us

Predict/Evaluatebased on predictive causation
Objectivity: Answers determined by data + predictive
analytics machine learning (ML) algorithms

— No untested assumptions

— Non-parametric test: Is future of Y conditionally independent
of history of X, given the history of Y? (Granger causation)

Generalizability: Adjust answers across locations by
applying causal CPT to different contexts, z

— “Transport formulas” for generalizing causal findings
Uncertainty characterization:Use non-parametric
model ensemblek.g., Random Forest algorithm from
ML) to quantify cross-validated prediction error rates
Performance validation:Cross-validation, competition
— Extensive ML literature, competitive evaluations



Summary

Modern software makes predictive and causal
analytics easy to apply

What we want: Manipulative causation
What we can get: Predictive causation

How: Information-based causal discovery algorithms

— No longer needed: Associations, unverified assumptions,
judgments

Comparative evaluation and validation: Information-
based causal discovery explains associations well in
practice

Can successfully identify and quantify possible causal
relationships from data



Thanks!



