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Vision for causal analytics

• Represent understanding of how the world works 
by an explicit causal model.  
– Learn, validate, and document  models with data

• Use causal model to quantify how probabilities of
consequences change as decision variables or 
policies are changed

• Given preferences, solve for best policy
– Choose policy variables to cause maximum net benefit 

(or expected social utility)
– Perform sensitivity analyses, value-of-information 

(VOI) analyses; optimize timing of interventions
– Evaluate results, adaptively learn and improve policies
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Representing understanding via a 
causal graph (DAG)
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Example:  AnalyticaInfluence Diagram (ID) causal model
Total Cost to society = Control Costof Emissions Reduction+“Value of a 
Life”*Excess Deaths

Green rectangle: Choice (decision, policy, controlled) variables
Yellow ellipse: Chance (random, state, uncontrolled) variables
Pink hexagon:  Value or utility variables
Others: Deterministic functions, conditional probability tables,
constants

Modular structure
• Each variable is 

conditionally 
independent of its 
more remote 
ancestors, given 
the values of its 
parents in the 
“DAG” (directed 
acyclic graph)

• Dependencies are 
quantified by 
conditional 
probability tables 
(CPTs) or trees
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Using the causal model to solve for the best 
policy, via probabilistic simulation of outcomes
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Simulation-based partial dependence plot:  Decision variable is varied over a range of 
alternative (counterfactual) values.  Other variables are drawn from distributions, for 
each value of the decision variable.

Use causal model to quantify how 
probabilities of consequences change as 
decision variables or policies are changed

Given preferences for consequences, solve 
for best policy
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Analytica’s probabilistic simulation-based 
uncertainty analysis
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If correct causal model is known, then it can be used to 
support risk management policy decisions.
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Causal analytics:  How to learn and 
validate causal models from data?
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What we want from causal analysis
• Predict/evaluateconsequences of policies

– How will (or how did) actionschange frequencies of 
outcomes in a population?
• How does reducing exposure change risks? 

• Manipulative causality

• Not associational, attributive, counterfactual/ potential 
outcomes, predictive, or mechanistic causality

– Most existing air pollution health effects studies and 
regulatory benefits assessments do not address 
predictive or manipulative causality (Schwartz et al., 
2016)
• Decades of associational, attributive, counterfactual/ potential 

outcomes, and mechanistic studies
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What we can get from data: 
Predictive causality

• Do changes in exposures help to predict changes in 
health effects?   
– Can be answered objectively from observational data 

without assumptions using machine-learning algorithms
• Data from valid quasi-experimental designs

• Analytics via information-based causal discovery algorithms

• Automated, well-vetted and validated software in R and Python

– Predictive causation is necessary (but not sufficient) for 
what we want: manipulative causation
• Useful screening tool , errs on the side of false positives

• Counterexample:  Nicotine-stained fingers are a predictive cause 
of lung cancer, but not a manipulative or mechanistic cause
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How to do it: Information-based causal discovery 
algorithms dominate competitive evaluations

(Hill, 2016, http://jenniferhill7.wixsite.com/acic-2016/competition)
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Empirically, tree-based 
model ensembles do best 
in causal discovery 
algorithm competitions

Propensity scoring 
(potential outcome 
models) do worst (about 
20 times greater 
prediction error and bias)

http://jenniferhill7.wixsite.com/acic-2016/competition


Principles of most successful causal 
effect estimation algorithms

• Information principle:  Causes are 
informative about (help to predict) their 
effects
– So, exploit predictive analytics algorithms!

• Use DAGs, trees, Random Forests , etc. to find 
informative variables

– Propagation principle:  Changes in causes 
help to predict and explain changes in 
their effects

– Information flows from causes to their 
effects over time

• Use non-parametric effects estimates 
– CART trees estimate conditional 

probabilities directly from data, no 
parametric model
• Avoids errors from modeling biases, 

specification errors, uncertain assumptions

– Allow nonlinearities and interactions

• Average over ensembles of hundreds of 
non-parametric estimates/predictions
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Making it easy:
Causal Analytics Toolkit (CAT)

http://cox-associates.com/downloads/
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CAT applies R and Python analytics to 
data in Excel

• Load data in Excel, click 
Excel to R to send it to R
– Los Angeles air basin
– 1461 days, 2007-2010  

(Lopiano et al., 2015, thanks 
to Stan Young for data)

– PM2.5 data from CARB
– Elderly mortality 

(“AllCause75”) from CA 
Department of Health

– Daily min and max temps & 
max relative humidity from 
ORNL and EPA

• Risk question:  Does PM2.5 
exposure increase elderly 
mortality risk?  If so, how 
much? 12

http://arxiv.org/abs/1502.03062
http://www.arb.ca.gov/aqmis2/aqdselect.php
http://www.cdph.ca.gov/Pages/DEFAULT.aspx
http://cdiac.ornl.gov/ftp/ushcn_daily/
https://www3.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm


Basic ideas of information-based 
Causal Analytics

• Use a (DAG) network to show which variables 
provide direct information about each other
– Arrows between variables show they are 

informative about each other 
• Learn network structure directly from data
• Scoring algorithms, constraint algorithms, hybrids

– Carefully check conclusions
• In non-parametric analyses we trust!
• Do power analyses using simulation

– Interpret neighbors in network as potential 
direct causes (satisfying necessary condition)

• Use partial dependence plots learned from 
data (based on averaging over many trees) to 
quantify relation between inputs and 
dependent variables.

13



Run BN structure discovery algorithms
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• Click B Bayesian Network 
to generate DAG structure. 
– Only variables connected 

to response variable by an 
arrow are identified as 
potential direct causes

– Multiple pathways 
between two variables 
reveal potential direct and 
indirect effects

– Example:  Direct and 
indirect paths between 
tmax and AllCause75.

CAT_bnLearn (year,month,day,AllCause75,PM2.5,tmin,tmax,MAXRH)

Bayesian Network diagram.

An arrow between two variables shows that they are informative about each other.

Network discovered by bnlearn



By contrast, regression estimates total
associations, given an assumed model

• Click on Automaticunder 
Regression Models

• CAT selects and runs 
appropriate regression 
models, reports results
– Quasi-Poisson regression 

model shows significant 
positive total C-R 
association between 
PM2.5 and elderly 
mortality (AllCause75)

– Significant negative total
association between 
temperature and elderly 
mortality
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Confirm or refute/refine BN structure 
with additional non-parametric tests

• Conditioning on very 
different values of a direct 
cause should cause the 
distribution of the response 
variable to change

• If the response variable does 
not change, then any 
association between them 
may be due to indirect 
pathways (e.g., confounding)
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Confirm or refute/refine BN structure 
with additional non-parametric tests
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• Conditioning on very 
different values of a direct 
cause should cause the 
distribution of the response 
variable to change

• If the response variable does 
not change, then any 
association between them 
may be due to indirect 
pathways (e.g., confounding)



Quantify direct causal relations 
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• Procedure: To quantify direct 
(potentially causal) relations 
after controlling for other 
variables, use partial 
dependence plot for response R 
vs. (potential) cause C.
– RandomForest algorithm averages 

multiple independent conditional 
probability predictions of outcome Y 
for each value of x

– Rationale:  DAG structure shows that 
the relation might be causal (X helps 
to predict Y). Partial dependence 
estimates size of potential effect.

– Data-based simulation of conditional 
expected values generates curve



Validate quantified C-R relations in 
hold-out sample

• CAT currently quantifies 
uncertainty using  
bootstrap and cross-
validation approaches 
for Random Forest 
ensembles

• Averaging over many 
trees reduces MSE 
(mean squared 
prediction error)
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Example applications: Boston & LA areas
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• PM2.5 has positive regression coefficient as predictor of AllCause75 in both data sets
• PM2.5 is not a significant predictive causal predictor in either data set 
• C-R function learned from Boston does not apply in LA (and vice versa)

LA Boston Scale including 0



Wrap-up on CAT

• Modern software makes it easy to apply 
information-based causal analytics to 
epidemiological data

• Entire analysis process can be automated
– Click on “Analyze” in CAT
– Minimizes roles of modeling choices, p-hacking, 

confirmation bias, etc.

• Limited but useful outputs:  Possible causal 
relationships detected and quantified directly 
from data
– Predictive causality, not necessarily manipulative
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Recent advances in causal analytics for 
risk analysis

• Clarifying what we want
– Manipulative causation

• Identifying what we can get 
– Predictive causation

• Understanding how to get it
– Information-based causal discovery algorithms

• Understanding how not to get it
– Associations, unverified assumptions, judgments 

• Comparative evaluation and validation of 
causal discovery algorithms
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Literature has usually not addressed 
predictive (or manipulative) causation

• How not to assess predictive causation

– Statistical associations (almost all existing literature)

– Judgments, weight-of-evidence (IARC)

– Untested modeling assumptions

• Potential outcome/counterfactual models, instrumental 
variables, regression discontinuity designs, etc.

• Intervention studies without control groups

• These methods are technically outdated (non-
competitive), but are still dominant in practice
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What we want from causal analysis
• Predict/Evaluate effects of actions
• Objectivity:  Answers determined by data 

– Answers should not depend on modeling choices 
– Answers should not depend on judgments (as at IARC)
– Discover (don’t assume) how actions affect outcomes
– “Putting the science back into risk science”

• Generalizability:  Adjust answers across locations
• Uncertainty characterization:  How sure can we be 

that policy changes cause desired effects?  
– Not “How likely is association to be causal?”
– Value of information: What would reduce uncertainty?

• Performance: Validate how well methods work
24



What information-based causal 
analytics gives us

• Predict/Evaluatebased on predictive causation
• Objectivity:  Answers determined by data + predictive 

analytics machine learning (ML) algorithms
– No untested assumptions
– Non-parametric test:  Is future of Y conditionally independent 

of history of X, given the history of Y?  (Granger causation)

• Generalizability:  Adjust answers across locations by 
applying causal CPT to different contexts, z
– “Transport formulas” for generalizing causal findings

• Uncertainty characterization:  Use non-parametric 
model ensembles(e.g., Random Forest algorithm from 
ML) to quantify cross-validated prediction error rates

• Performance validation:  Cross-validation, competition
– Extensive ML literature, competitive evaluations
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Summary

• Modern software makes predictive and causal 
analytics easy to apply

• What we want: Manipulative causation

• What we can get: Predictive causation

• How: Information-based causal discovery algorithms
– No longer needed:  Associations, unverified assumptions, 

judgments 

• Comparative evaluation and validation:  Information-
based causal discovery explains associations well in 
practice

• Can successfully identify and quantify possible causal 
relationships from data
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Thanks!
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